
Online Appendix for “Governing Multiple Firms”

A Proofs

A.1 Proofs of Section 1

Proof of Proposition 1. Let x∗(v, θ) be an equilibrium strategy for type-(v, θ). If the

equilibrium involves mixed strategies, then x∗(v, θ) is a set. We start by proving that there is

a unique x > 0 such that x∗i (v, L) = x∗i (v, 0) = x∗i (v, L) = x. We argue six points:

1. If x′i ∈ x∗i (v, L) ∪ x∗i (v, 0) then x′i > 0. By choosing xi = 0, type-v receives a payoff of v.

However, note that there is x′′i > 0 s.t. x′′i ∈ x∗i (v, L). Therefore, pi (x
′′
i ) > v with positive

probability. By choosing x′′i , type-v increases her revenue and obtains an expected payoff

strictly greater than v. Therefore, 0 6∈ x∗i (v, L) ∪ x∗i (v, 0).

2. If x′i ∈ x∗i (v, 0) then x′i 6∈ x∗i (v, L) ∪ x∗i (v, 0). Suppose not. Since x′i ∈ x∗i (v, L) ∪ x∗i (v, 0),

with positive probability pi (xi) < v. Based on point 1, it must be x′i > 0. Since x′i > 0,

type-(v, 0) will deviate to xi = 0, which generates a strictly higher payoff of v.

3. If x′i ∈ x∗i (v, 0) then x′i 6∈ x∗i (v, L). Suppose not. Based on point 2, x′i ∈ x∗i (v, 0)

implies x′i 6∈ x∗i (v, L) ∪ x∗i (v, 0). Therefore, pi (x
′
i) = v w.p. 1, and type-(v, L) can satisfy

her liquidity need by choosing x′i. She chooses x′′i 6= x′i only if pi (x
′′
i ) = v w.p. 1.

Thus, there is no x′′i ∈ x∗i (v, L) s.t. x′′i ∈ x∗i (v, L) ∪ x∗i (v, 0). Therefore, pi (x
′′′
i ) = v ∀

x′′′i ∈ x∗i (v, L) ∪ x∗i (v, 0) w.p. 1, and so type-(v, θ) receives a payoff of v. However, type-

(v, 0) can always choose x′i and secure a payoff strictly larger than v, since pi (x
′
i) = v

w.p. 1. We conclude, if x′i ∈ x∗i (v, 0), then x′i 6∈ x∗i (v, L) ∪ x∗i (v, L) ∪ x∗i (v, 0).

4. x∗i (v, L) = x∗i (v, L) ∪ x∗i (v, 0). Suppose on the contrary there is x′i ∈ x∗i (v, L) s.t. x′i 6∈
x∗i (v, L) ∪ x∗i (v, 0). The contradiction follows from the same arguments as in point 3.

Suppose on the contrary there is x′i ∈ x∗i (v, L) ∪ x∗i (v, 0) s.t. x′i 6∈ x∗i (v, L). Based on

point 2, it must be x′i 6∈ x∗i (v, 0), and so pi (x
′
i) = v w.p. 1. Moreover, note that if

x′′i ∈ x∗i (v, L) then x′′i > 0 and pi (x
′′
i ) > v w.p. 1. However, type-(v, 0) can always choose

x′′i and secure a payoff strictly larger than v, a contradiction.

43



5. If x′ ∈ x∗i (v, 0) then x′ < x′′ ∀ x′′ ∈ x∗i (v, L)∪x∗i (v, L)∪x∗i (v, 0). Suppose on the contrary

there are x′ ∈ x∗i (v, 0) and x′′ ∈ x∗i (v, L) ∪ x∗i (v, L) ∪ x∗i (v, 0) s.t. x′ ≥ x′′. Based on

the previous points, x′ 6∈ x∗i (v, L) ∪ x∗i (v, L) ∪ x∗i (v, 0), and so x′ > x′′. Moreover, since

x′ 6∈ x∗i (v, L)∪x∗i (v, 0), w.p. 1 pi(x
′) = v. However, type-(v, L) has a profitable deviation

to x′: she receives a payoff of v and also satisfies her liquidity need. Indeed, since x′ > x′′

and x′′ ∈ x∗i (v, L), then if the investor can satisfy her liquidity need by choosing x′′, she

can do so by choosing x′.

6. x∗i (v, L) is a singleton (types-(v, L), (v, L), and (v, 0)). Suppose on the contrary there

are x′ < x′′ where x′, x′′ ∈ x∗(v, L). Since θ = L it must be 0 < x′. Based on point 3,

x′, x′′ ∈ x∗i (v, L) ∪ x∗i (v, 0), and so pi(x
′) ∈ (v, v) and pi(x

′′) ∈ (v, v). Since type-(v, L)

must be indifferent between x′ and x′′, then

x′′pi(x
′′) + (1− x′′)v = x′pi(x

′) + (1− x′)v ⇔

(x′′ − x′) (pi(x
′′)− v) = x′ (pi(x

′)− pi(x′′)) .

This implies pi(x
′) < pi(x

′′). Since x′ < x′′, type-v strictly prefers x′′ over x′. This implies

that x′ ∈ x∗i (v, L)\x∗i (v, L), a contradiction.

Given the claims above, Bayes’ rule implies pi(x) = pso (τ). We prove that in any equilib-

rium that survives the Grossman and Perry (1986) refinement, x = xso (τ). Suppose on the

contrary that x > L
pso(τ)

. Since the price function is non-increasing, there is ε > 0 such that

(x− ε) pi (x− ε) ≥ L/n. This implies that type (v, L) will strictly prefer deviating to x− ε, a

contradiction. We conclude x ≤ xso (τ). Suppose on the contrary that x < xso (τ). This implies

that the investor does not raise L in equilibrium by selling x. Consider a deviation where all

types other than (v, 0) deviate from x to xso (τ). Given the deviation, the market maker will

set p (xso (τ)) = pso (τ). Therefore, all types who deviate raise strictly more revenue, and so

are strictly better off. Since pso (τ) < v type, (v, 0)’s equilibrium payoff is still strictly higher

than selling xso (τ) claims of the firm. Therefore, an equilibrium with x < xso (τ) violates the

Grossman and Perry (1986) refinement.

Next, note that in equilibrium it must be x∗i (v, 0) > 0⇒ pi(x
∗
i (v, 0)) = v. Since x∗i (v, 0) = 0,

the price function given by (4) is consistent with (3) and is non-increasing. Note that (3) is

incentive compatible given (4). First, the equilibrium payoff of type-(v, 0) is v. Since xi > 0⇒
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p∗i (xi) < v, type (v, 0) has no profitable deviation. Second, since pso (τ)xso (τ) ≤ L/n and

p∗i (xi) is flat on (0, xso], deviating to (0, xso] generates revenue strictly lower than L, and so is

suboptimal if θ = L. Moreover, since xi > xso (τ) ⇒ p∗i (xi) = v, the investor has no optimal

deviation to xi > xso (τ), regardless of firm value. Last, it is easy to see that xi = xso (τ) is

optimal for type-(v, 0). Before we conclude, we note that Lemma 3 proves that the equilibrium

that is given by Proposition 1 satisfies the Grossman and Perry (1986) refinement.

Lemma 3 The equilibrium that is given by Proposition 1 satisfies the Grossman and Perry

(1986) refinement.

Proof. It is sufficient to show that for any i, there is no off-equilibrium strategy x̂i and a

non-empty subset of investor types Λ, that satisfy the following:

1. If the market maker observes x̂i, it believes that (v, θ) ∈ Λ and sets the price accordingly.

Denote this price by p̂i.

2. If (v, θ) ∈ Λ, the investor’s payoff from deviating to x̂i, if deviation leads to a price of p̂i,

is strictly higher than her equilibrium payoff.

3. If (v, θ) 6∈ Λ, the investor’s payoff from deviating to x̂i, if deviation leads to a price of p̂i,

is weakly lower than her equilibrium payoff.

First, note that type-(v, 0) receives the highest possible payoff of v, so (v, 0) /∈ Λ. Second,

it cannot be that Λ = {(v, L), (v, 0)}, since then p̂i = v, implying that these types do not

gain from a deviation to x̂i. Third, it cannot be that Λ = {(v, L), (v, L), (v, 0)}, since then p̂i

will be the same price as in equilibrium. This means that x̂i > x, otherwise, by construction,

the liquidity need will not be met w.p. 1. This also implies that if x = 1, any deviation to

x̂i < 1 is suboptimal since more revenue is raised by following the equilibrium strategy. In

turn, x̂i > x implies that type-(v, L) is strictly worse off from a deviation. This shows that

both (v, L) and (v, 0) cannot be in K̂. Fourth, suppose that (v, L) ∈ K̂ and either (v, L) and

(v, 0) is in Λ, but not both. Note that, since (v, L) ∈ K̂ and x̂ip̂i ≥ L w.p. 1, a deviation is

feasible for both (v, L) and (v, 0). Thus, if it is strictly optimal for type-(v, L) to deviate, it

must be strictly optimal for type-(v, 0), and vice versa. Finally, suppose type (v, L) deviates

to x′ but types-(v, 0) and (v, L) do not find it optimal to deviate. The market maker must set
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pi(x
′) = v, and deviation is optimal for type (v, L) only if x′v ≥ L. Type-v does not deviate

only if

x′v + (1− x′) v ≤ xpi(x) + (1− x) v,

which requires x′ < x. Moreover, the above condition implies

(x− x′) v ≤ xpi(x)− x′v

Since x′ < x we have xpi(x) > x′v ≥ L. This observation, however, contradicts xpi(x) ≤ L.

Proof of Proposition 2. Suppose L/n ≤ v (1− τ). The investor can raise at least L by

selling only bad firms, even if she receives the lowest possible price of v. Since the investor is

never forced to sell a good firm, she sells a positive amount x′i > 0 from a good firm only if

p (x′i) = v, i.e. she does not sell x′i from a bad firm. We first argue that, in any equilibrium,

xi > 0⇒ p (xi) < v. Suppose on the contrary there is x′i > 0 s.t. p (x′i) = v, and let x′i be the

highest quantity with this property. The investor chooses not to sell x′i from a bad firm only

if there is x′′i that she chooses with strictly positive probability, where

x′′i pi (x
′′
i ) + (1− x′′i ) v ≥ x′ipi (x

′
i) + (1− x′i) v. (24)

The above inequality requires pi (x
′′
i ) > v. Moreover, since she sells x′′i from a bad firm with

positive probability, we have pi (x
′′
i ) < v. Given this price, she will never sell x′′i from a good

firm, contradicting the requirement that pi (x
′′
i ) > v. Therefore, she sells x′i from a bad firm with

strictly positive probability, which contradicts p (x′i) = v. We conclude that in any equilibrium

xi > 0⇒ p (xi) < v, and so vi = v ⇒ xi = 0. These conditions also imply xi > 0⇒ p (xi) = v.

Note that the condition on x̃ simply requires that in expectation (i.e. when the investor plays

mixed strategies) she sells enough of the bad firms to meet her liquidity needs, given by the

realization of θ. Last, p∗ (0) follows from Bayes’ rule and the observation that vi = v ⇒ xi = 0.

This completes part (i).

Next, suppose v (1− τ) < L/n. We proceed by proving the following claims.

1. In any equilibrium there is a unique x > 0 s.t. x∗i (v, L) = x∗i (v, 0) = x. To prove this,

suppose that in equilibrium, the investor is selling x′′i and x′i of a good firm when θ = L
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with strictly positive probability. Without loss of generality, suppose x′′i > x′i ≥ 0. Since

she must be indifferent between x′′i and x′i,

x′′i p (x′′i )− x′ip (x′i) = v (x′′i − x′i) > 0. (25)

This condition implies that x′′i generates strictly higher revenue than x′i. Therefore, she

never sells x′i of a bad firm. Indeed, she can always sell x′′i and achieve both higher

revenue and a higher payoff:

x′′i p (x′′i ) + (1− x′′i ) v > x′ip (x′i) + (1− x′i) v

⇒ x′′i p (x′′i )− x′ip (x′i) > v (x′′i − x′i) > 0.

Since x′i is played with positive probability, but only when vi = v, then p (x′i) = v.

Combined with condition (25), this implies that p (x′′i ) = v. Recall that pi (x
∗
i (v, 0)) = v.

Therefore, it cannot be that the investor sells x∗i (v, θ) of a bad firm. This in turn implies

pi (xi (v, θ)) = v, for θ ∈ {0, L} and so her payoff from selling a bad firm is always v in

equilibrium. This creates a contradiction, since when θ = 0, she can strictly increase her

payoff by selling x′′i > 0 of a bad firm and obtaining a payoff x′′i v + (1− x′′i ) v > v. We

conclude that, in any equilibrium, there is a unique x such that the investor sells x of

each good firm when θ = L.

Since v (1− τ) < L/n, it must be x > 0. We denote pi (x) = p. Since the investor sells

x of a good firm with positive probability, p > v. We argue that, in any equilibrium, if

θ = 0 then she sells x of every bad firm. Suppose she sells a different quantity. Recall

that pi (x
∗
i (v, 0)) = v implies that she does not sell x∗i (v, 0) of a bad firm in equilibrium.

Since x∗i (v, 0) 6= x and x∗i (v, 0) 6= x∗i (v, 0), we must have pi (x
∗
i (v, 0)) = v, which yields

a payoff of v. This creates a contradiction since she has strict incentives to deviate and

sell x of a bad firm, thereby obtaining a payoff of strictly more than v. Note that this

implies that p < v.

2. In any equilibrium, either x∗i (v, L) = x w.p. 1, or x∗i (v, L) = 1 w.p. 1, where x is defined

as in Claim 1. To prove this, note that the investor cannot sell x∗i (v, 0) of a bad firm in

equilibrium. Therefore, if x∗i (v, L) 6= x, then pi (x
∗
i (v, L)) = v. Suppose x∗i (v, L) 6= x and

x∗i (v, L) < 1. Then, she can always deviate to fully selling a bad firm, and not selling

47



some good firms, to keep revenue constant. Her payoff from selling a bad firm is no lower

(since she previously received v for each bad firm), but by not selling some good firms,

for which she previously received xp+ (1− x) v < v, she increases her payoff. Therefore,

x∗i (v, L) ∈ {x, 1}. Suppose the investor chooses x∗i (v, L) = 1 with probability strictly

between zero and one. Therefore, p (1) = v < p, and the investor chooses x∗i (v, L) = 1

with strictly positive probability only if xp < min {L/n, τxp+ (1− τ) v}. That is, it

must be that by selling x from all firms, she cannot raise revenue of at least L, and

by selling x of all good firms and 1 of all bad firms, she can raise strictly more. This,

however, implies the investor cannot be indifferent between 1 and x, thereby proving that

either x∗i (v, L) = x w.p. 1, or x∗i (v, L) = 1 w.p. 1, as required.

3. If in equilibrium x∗i (v, L) = 1 and x < 1 then L/n < v and x = xco (τ), as given by (7).

To prove this, since x∗i (v, L) = 1 and vi = v ⇒ x∗i < 1, pi (1) = v. Moreover, given claims

1 and 2, and by Bayes’ rule, p is given by pco (τ), as given by (8). Suppose θ = L. Since

pco (τ) > v, the investor chooses x∗i (v, L) = 1 only if the revenue from selling x from all

firms is strictly smaller than L and also the revenue from selling x of all good firms and

1 from all bad firms, i.e.

xpco (τ) < min {(1− τ)v + τxpco (τ) , L/n} ⇔ xpco (τ) < min {v, L/n} .

Intuitively, we require xpco (τ) < v, since the investor receives xpco (τ) by partially selling

x of a bad firm for price pco (τ), and v by fully selling a bad firm for price v. In equilibrium,

she would only fully sell a bad firm if doing so raises more revenue.

We now prove that (1− τ)v + τxpco (τ) = L/n, i.e. fully selling bad firms and selling x

of good firms raises exactly L. We do so in two steps. We first argue that this strategy

cannot raise more than L, i.e.

(1− τ)v + τxpco (τ) ≤ L/n. (26)

Suppose not. Then, the investor has “slack”: she can deviate by selling only x−ε instead

of x from each good firm, while still meeting her liquidity need. Since prices are non-

increasing, pi (x− ε) ≥ pco (τ), and so for small ε > 0, she still raises at least L. Her

payoff is strictly higher since she sells less from the good firms. We next argue that this
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strategy cannot raise less than L, i.e.

(1− τ)v + τxpco (τ) ≥ L/n. (27)

Suppose not. If the strategy did not raise L, then it must be that v ≤ (1−τ)v+τxpco (τ),

i.e. the alternative strategy of fully selling her entire portfolio raises even less revenue.

Therefore, v ≤ xpco (τ), which contradicts xpco (τ) < v. Intuitively, if fully selling a firm

for v raises less revenue than selling x of a firm for pco (τ) , then the investor would not

pursue the strategy of fully selling bad firms. Combining (26) and (27) yields

(1− τ)v + τxpco (τ) = L/n

as required. This condition implies x = xco (τ), and xcopco (τ) < v implies L/n < v as

required.

4. If in equilibrium x∗i (v, L) = x then v 1−τ
βτ+1−τ ≤ L/n, p = pso (τ) and x = xso/n. To

prove this, since prices are monotonic, we must have xp ≤ L/n. Otherwise, if θ = L

the investor deviates by selling x − ε instead of x from a good firm. For small ε > 0,

she can raise the same amount of revenue and sell less from the good firms. Note that

x∗i (v, L) = x⇒ p = pso (τ). Suppose on the contrary that such an equilibrium exists and

L/n < v
1− τ

βτ + 1− τ
.

We argue that there is an optimal deviation to fully selling all bad firms, and selling

x′ from good firms, for some x′ ∈ (0, x]. Since L/n
v

< 1−τ
βτ+1−τ < 1, she can always

raise at least L by selling all firms. Therefore, it must be xpso (τ) = L/n. Moreover,

pso (τ) > v ⇒ x < 1. Since x is an equilibrium, xp (x) < L/n for any x < x. Let

x′ =
L/n− (1− τ) v

τpso (τ)

Note that L/n− (1− τ) v > 0 implies x′ > 0 and xpso (τ) = L/n < v implies x′ < x. By

deviating to fully selling all bad firms and selling only x′ ≤ x from all good firms, the
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revenue raised is at least L. This deviation generates a higher payoff if and only if

x′τpso (τ) + (1− x′) τv + (1− τ) v > xpso (τ) + (1− x) (τv + (1− τ) v)

Using xpso (τ) = L/n, x′ = L/n−(1−τ)v
τpso(τ)

, and pso (τ) = v + ∆ βτ
βτ+1−τ , we obtain L/n <

v 1−τ
βτ+1−τ , which implies that this deviation is optimal, a contradiction. We conclude that

L/n ≥ v 1−τ
βτ+1−τ as required. Intuitively, if the shock were smaller, the investor would

retain more of good firms. Note that for the same reasons as in the benchmark, it must

be x = xso/n.

Consider part (ii). We show that if v (1− τ) < L/n < v then the specified equilibrium

indeed exists. First note that L/n < v ⇒ xco (τ) < 1. Second, note that the prices in (8)

are consistent with the trading strategy given by (7). Moreover, the pricing function in (8)

is non-increasing. Third, we show that given the price function in (8), the investor’s trading

strategy in (7) is indeed optimal. Suppose θ = 0. Given (8), the investor’s optimal response is

vi = v ⇒ xi = 0 and vi = v ⇒ xi = xco (τ), as prescribed by (7). Suppose θ = L. Given (8),

the investor’s most profitable deviation involves selling xco from each bad firm, and the least

amount of a good firm, such that she raises at least L. However, recall that by the construction

of xco (τ), (1 − τ)v + τxco (τ) pco (τ) = L/n. Also note that L/n < v ⇒ xco (τ) pco (τ) < L/n.

Therefore, the most profitable deviation generates a revenue strictly lower than L, and hence

is suboptimal. This concludes part (ii).

Consider part (iii). We show that if v 1−τ
βτ+1−τ ≤ L/n then the specified equilibrium indeed

exists. The proof is as described by Proposition 1, where xso is replaced by xso/n. The only

exception is that we note that as per the proof of Claim 4, the condition v 1−τ
βτ+1−τ ≤ L/n

guarantees that, if θ = L, the investor has no profitable deviation. The proof that the investor

has no profitable deviation when θ = 0 is the same as in the proof of part (ii) above.

Finally, part (iii) follows from claims 1-4.

Proof of Proposition 3. Consider part (i). From Proposition 1,

Pso (vi, τ) =

pso (τ) if vi = v

βpso (τ) + (1− β) v if vi = v,
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and from Proposition 2,

Pco (v, τ) =


γ
[
v + ∆ τ

τ+γ(1−τ)

]
+ (1− γ) v if L/n ≤ v (1− τ)

{βv + (1− β) pco (τ) , Pso (v, τ)} if v (1− τ) < L/n < v

Pso (v, τ) if v ≤ L/n

Pco (v, τ) =


v + ∆ τ

τ+γ(1−τ)
if L/n ≤ v (1− τ)

{βpco (τ) + (1− β) v, Pso (v, τ)} if v (1− τ) < L/n < v

Pso (v, τ) if v ≤ L/n.

where the curly brackets encompass the two possible equilibria (types-(ii) and (iii)) that can

exist when v (1− τ) < L/n < v.

To prove (9), first suppose v (1− τ) < L/n. It is sufficient to note that

βv + (1− β) pco (τ) < pso (τ)

and

βpco (τ) + (1− β) v > βpso (τ) + (1− β) v

which holds given that pco (τ) > pso (τ). Next, suppose L/n ≤ v (1− τ). Note that γ ∈[
0, 1− β L/n

v(1−τ)

]
and

pso (τ) ≥ γ

[
v + ∆

τ

τ + γ (1− τ)

]
+ (1− γ) v ⇔ γ ≤ βτ

βτ + (1− β) (1− τ)

βpso (τ) + (1− β) v < v + ∆
τ

τ + γ (1− τ)
⇔ γ <

βτ

βτ + (1− β) (1− τ)
,

as required.

Consider part (ii). From Proposition 1,

Vso (vi, τ) =

v + xso(τ)
n

(pso (τ)− v) if vi = v

v − β xso(τ)
n

(v − pso (τ)) if vi = v,
(28)
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and from Proposition 2,

Vco (v, τ) =


v if L/n ≤ v (1− τ)

{v + (1− β)xco (τ) (pco (τ)− v) , Vso (v, τ)} if v (1− τ) < L/n < v

Vso (v, τ) if v ≤ L/n

Vco (v, τ) =


v if L/n ≤ v (1− τ)

{v − βxco (τ) (v − pco (τ)) , Vso (v, τ)} if v (1− τ) < L/n < v

Vso (v, τ) if v ≤ L/n

(29)

To prove (11), it is sufficient to note that both

v − βxco (τ) (v − pco (τ)) > Vso (v, τ)

v + (1− β)xco (τ) (pco (τ)− v) < Vso (v, τ)

hold if and only if(
v +

L/n− v
τ

)
(1− β)

v (βτ + (1− β) (1− τ)) + ∆βτ
<

L/n

v (βτ + 1− τ) + ∆βτ
,

which always holds given that

L/n < v ⇒ v +
L/n− v

τ
< L/n

∆ > 0⇒ (1− β)

v (βτ + (1− β) (1− τ)) + ∆βτ
<

1

v (βτ + 1− τ) + ∆βτ
.

Next, note that

Vso (v, τ)− Vso (v, τ) = φvoice (τ) ,
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where φvoice (τ) is given by (13) and is decreasing with L/n. Also note that

Vco (v, τ)− Vco (v, τ) =


∆ if L/n ≤ v (1− τ){
ζvoice (τ) + ∆ L/n−v(1−τ)

v( 1−β
β

(1−τ)+τ)+∆τ
β, φvoice (τ)

}
if v (1− τ) < L/n < v

φvoice (τ) if v ≤ L/n

(30)

where ζvoice (τ) is given by (16) and is decreasing with L/n. We argue that if v (1− τ) < L/n <

v then

ζvoice (τ) + ∆
L/n− v (1− τ)

v(1−β
β

(1− τ) + τ) + ∆τ
β > φvoice (τ) .

If true, this will prove that Vco (v, τ) − Vco (v, τ) is globally decreasing in L/n as well. If

v (1− τ) < L/n < v then

ζvoice (τ) + ∆
L/n− v (1− τ)

v(1−β
β

(1− τ) + τ) + ∆τ
= ∆

[
1− 1− β

τ
β

L/n− v (1− τ)

v((1− β) (1− τ) + βτ) + β∆τ

]
φvoice (τ) = ∆

[
1− β L/n

v + (∆β − v (1− β)) τ

]
and the required inequality holds if and only if

1− β
τ

L/n− v (1− τ)

v((1− β) (1− τ) + βτ) + β∆τ
<

L/n

v + (∆β − v (1− β)) τ
⇔

L/n− v (1− τ)

τL/n
<

1

1− β
v((1− β) (1− τ) + βτ) + β∆τ

v + (∆β − v (1− β)) τ
⇔

L/n− v (1− τ)

τL/n
<

v((1− τ) + β
1−β τ) + β

1−β∆τ

v + (∆β − v (1− β)) τ
⇔

1− τ
τ

L/n− v
L/n

<
β2

1− β
τ

v + ∆

v + (∆β − v (1− β)) τ
.

Since L/n < v, the LHS is negative, but the RHS is positive. Therefore, the inequality holds

as required.

A.2 Proofs of Section 2

We start with an auxiliary lemma which will be useful for the proofs of this section.
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Lemma 4 Consider an equilibrium under common ownership in which each firm is good w.p.

τ ∗ = F (c∗). Then:

(i) If L/n ≤ v (1− τ ∗) then L/n ≤ v (1− F ((1− β) ∆)) and

c∗ = min

{
∆, F−1

(
1− L/n

v

)}
. (31)

(ii) If v (1− τ ∗) < L/n and the equilibrium is type-(ii), then

ζvoice (F (c∗))− β (1− xco (F (c∗))) ∆ ≤ c∗ ≤ ζvoice (F (c∗)) , (32)

where ζvoice (·) is given by (16).

(iii) If v (1− τ ∗) < L/n and the equilibrium is type-(iii), then

c∗ = φvoice (F (c∗)) , (33)

where φvoice (·) is given by (13).

Proof. Let Π (τ ∗, τ) be the investor’s expected payoff, including the possibility of trade,

given that the market makers set prices under the belief there are τ ∗ monitored firms, and

the investor monitors a fraction τ of all firms, where we allow for τ 6= τ ∗. Then, τ ∗ is an

equilibrium only if satisfies τ ∗ ∈ arg maxτ∈[0,1] Π (τ ∗, τ). We will slightly abuse notation by

defining Π (c∗, c) ≡ Π (F (c∗) , F (c)) and require c∗ ∈ arg maxc≥0 Π (c∗, c).

Consider part (i) and suppose L/n ≤ v (1− τ ∗). The equilibrium must be type-(i) as in

Proposition 2. In this case, the investor never sells a good firm if she does not suffer a shock,

and she is indifferent between selling and not selling a bad firm. For any cutoff c, she expects

to sell a fraction x∗ (c) ∈ [0, 1] of a good firm upon a shock, where

x∗ (c) = min

{
1,max

{
0,
L/n− v (1− F (c))

vF (c)

}}
(34)

is increasing in c. Indeed, with F (c) good firms in her portfolio, she will sell good firms only

if she cannot satisfy her liquidity need by selling all bad firms. Since L/n ≤ v (1− τ ∗) < v, we
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can rewrite

x∗ (c) = max

{
0, 1−

1− L/n
v

F (c)

}
.

Therefore,

Π (c∗, c) = F (c) (v − x∗ (c) β∆) + (1− F (c)) v − F (c)E [ci|ci < c] (35)

= v +

F (c) (∆− E [ci|ci < c]) if c ≤ F−1
(

1− L/n
v

)
β∆(1− L/n

v
) + F (c) (∆ (1− β)− E [ci|ci < c]) otherwise.

(36)

Since Π (c∗, c) is independent of c∗ as long as L/n ≤ v (1− τ ∗), we write Π (c) instead of

Π (c∗, c), in this range. That is, we require c∗ ∈ arg maxc≥0 Π (c) s.t., L/n ≤ v (1− F (c∗)).

Note that for any y > 0,

∂

∂c
(F (c) y − F (c)E [ci|ci < c]) = f (c) (y − c)

∂2

∂2c
(F (c) y − F (c)E [ci|ci < c]) = f ′ (c) (y − c)− f (c) .

There are three cases to consider:

1. If ∆ ≤ F−1
(

1− L/n
v

)
then ∆ = arg maxc≥0 Π (c).

2. If (1− β) ∆ ≤ F−1
(

1− L/n
v

)
< ∆ then F−1

(
1− L/n

v

)
= arg maxc≥0 Π (c).

3. If F−1
(

1− L/n
v

)
< (1− β) ∆ then (1− β) ∆ = arg maxc≥0 Π (c).

Since L/n ≤ v (1− τ ∗), we also require x∗ (c∗) = 0 ⇒ c∗ ≤ F−1(1 − L/n
v

). Therefore,

if F−1
(

1− L/n
v

)
< (1− β) ∆ an equilibrium of this sort cannot exist. If F−1

(
1− L/n

v

)
≥

(1− β) ∆ then it must be c∗ = min
{

∆, F−1
(

1− L/n
v

)}
, as required.

Consider parts (ii) and (iii) and suppose L/n > v (1− τ ∗). Let x∗ = xco (τ ∗) and p∗ =

pco (τ ∗) if the equilibrium is type-(ii) and let x∗ = xso (τ ∗) /n and p∗ = pso (τ ∗) if the equilibrium

is type-(iii).

If θ = 0, the investor obtains a payoff of v from a good firm. She can obtain a payoff of

x∗p∗ + (1− x∗) v from a bad firm by selling x∗ of each bad firm, which generates the highest
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payoff. Recall that, from Proposition 2 the investor has no incentives to sell less than x∗ of a

bad firm when θ = 0. Thus, for any x′1 < x∗,

x∗p∗ + (1− x∗) v > x′ip (x′i) + (1− x′i) v

⇒ x∗p∗ − x′ip (x′i) > (x∗ − x′i) v > 0.

Therefore, in any equilibrium, the price function in the range [0, x∗) must satisfy this condition.

This condition also implies that the investor cannot raise more revenue from a single deviation

to selling x′ < x∗ from one particular bad firm. Without loss of generality and to simplify

the exposition, hereafter we assume x∗i (v, 0) = 0 and x′ ∈ (0, x∗) ⇒ p (x′i) = p∗. Note that

these off-equilibrium prices preserve monotonicity, and x∗p∗−x′ip (x′i) > (x∗ − x′i) v. Moreover,

note that if the investor found it optimal to monitor τ ∗ firms under the general price function

(i.e. before specializing to p (x′i) = p∗), deviating to sell x′ < x∗ from a given firm cannot

be sufficiently beneficial to induce deviation from monitoring τ ∗ firms under the pricing rule

x′ ∈ (0, x∗)⇒ p (x′i) = p∗. Indeed, since the pricing rule x′ ∈ (0, x∗)⇒ p (x′i) = p∗ is the lowest

that satisfies monotonicity, a deviation from monitoring τ ∗ firms is less beneficial than under

the general price function, and hence, suboptimal as well. Intuitively, if she sold less than x∗

from bad firms, she would receive the same price as if she sold x∗, and so her incentives to

monitor are no different.

Suppose θ = L, and consider a type-(iii) equilibrium. We argue that the investor has no

incentives to deviate from selling x∗ from each firm. We consider two cases.

1. Suppose L/n ≥ v. We first argue x∗p∗ ≥ v. To see why, recall that in this case that

x∗ = min
{
L/n
p∗
, 1
}

. Therefore, either x∗p∗ = L/n ≥ v or x∗ = 1. Since p∗ ≥ v,

x∗ = 1 ⇒ x∗p∗ ≥ v. Second, since x∗p∗ ≥ v, the investor raises more funds when she

chooses xi = x∗ rather than xi = 1 (when x∗ < 1). Therefore, she will sell x∗ from each

bad firm and L/n−x∗p∗(1−τ)
p∗τ

from each good firm. If x∗p∗ = L/n then L/n−x∗p∗(1−τ)
p∗τ

= x∗,

and if x = 1 then p∗ ≤ L/n, which implies that she has to sell the entire portfolio to

raise L. Either way, she will sell x∗ from each firm in her portfolio.

2. Suppose L/n < v. Note that x∗ = min
{
L/n
p∗
, 1
}

and p∗ > v > L/n imply x∗p∗ = L/n,

and so x∗p∗ < v. If the investor deviates from selling x∗ from each firm, she would

deviate to fully selling min
{
L/n
v
, 1− τ

}
bad firms, selling a fraction x∗ of (1− τ) −
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min
{
L/n
v
, 1− τ

}
bad firms, and selling a fraction x̂ = max

{
0, L/n−(1−τ)v

τp∗

}
of all good

firms. Deviation is not strictly preferred if and only

τ [x̂p∗ + (1− x̂) v] +

[
(1− τ)−min

{
L/n

v
, (1− τ)

}]
[x∗p∗ + (1− x∗) v] +

min

{
L/n

v
, (1− τ)

}
v

≤ τ [x∗p∗ + (1− x∗) v] + (1− τ) [x∗p∗ + (1− x∗) v]⇔

max

{
0,
L/n− (1− τ) v

τp∗

}
≥ x∗

[
1−min

{
L/n

v
, 1− τ

}
(p∗ − v)

τ (v − p∗)

]
(37)

If τ ≤ 1 − L/n
v

then condition (37) holds if and only if τ ≤ L/n
v

βτ∗

1−τ∗ , where we used

p∗ = pso (τ ∗). Note that

1− L/n

v
<
L/n

v

βτ ∗

1− τ ∗
⇔ 1− τ ∗

1− τ ∗ + βτ ∗
v < L/n

which must hold if the equilibrium is type-(iii). If τ > 1− L/n
v

then condition (37) holds if

and only if L/n ≥ 1−τ∗
1−τ∗+βτ∗v, which must hold if the equilibrium is type-(iii). Therefore,

condition (37) holds, and deviation is suboptimal.

Combining cases 1 and 2 above, we conclude that the investor has no incentives to deviate

from selling x∗ from each firm, and so her payoff is given by

Π (c∗, c) = F (c) [v − βx∗ (v − p∗)] + (1− F (c)) [v + x∗ (p∗ − v)]− F (c)E [ci|ci < c] .(38)

= v + ∆

[
F (c) + x∗ (τ ∗ − F (c))

β

βτ ∗ + 1− τ ∗

]
− F (c)E [ci|ci < c]

and hence,
∂Π (c∗, c)

∂c

1

f (c)
= ∆

[
1− x∗ β

βτ ∗ + 1− τ ∗

]
− c.

Substituting x∗ = xso (τ ∗) into the first-order condition ∂Π(c∗,c)
∂c

= 0, yields the condition

c∗ = φvoice (F (c∗)), as required. This completes part (iii).

Suppose θ = L, and consider the type-(ii) equilibrium. Recall it must be L/n < v. Also

recall that, by construction,

τ ∗x∗p∗ + (1− τ ∗) v = L/n.
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Therefore, the investor can raise L by fully selling (1− τ ∗)n bad firms and selling a fraction x∗

of τ ∗n good firms. Also, since x∗p∗ < v, selling x∗ from every firm will not raise enough revenue

to satisfy the shock. Note that, regardless of firm quality, the investor has strict incentives

to sell x∗ rather 1. Indeed, in the latter case the payoff is v, the lowest possible. Therefore,

regardless of the proportion of good firms (i.e. even if τ 6= τ ∗), she will fully sell exactly

(1− τ ∗)n firms and a fraction x∗ of all other firms. The investor will prefer fully selling a bad

firm if there are sufficient numbers. Therefore, her expected payoff as a function of choosing

cutoff c is:

Π (c∗, c) = (1− F (c))


(1− β) [x∗p∗ + (1− x∗) v]

+β

 vmin
{

1, 1−τ∗
1−F (c)

}
+ [x∗p∗ + (1− x∗) v]

(
1−min

{
1, 1−τ∗

1−F (c)

}) 


+F (c)

(1− β) v + β

 vmax
{

0, F (c)−τ∗
F (c)

}
+ [x∗p∗ + (1− x∗) v]

(
1−max

{
0, F (c)−τ∗

F (c)

}) 
−F (c)E [ci|ci < c]

Using x∗ = xco (τ ∗) and p∗ = pco (τ ∗), we obtain:

Π (c∗, c) = v + F (c) ∆ + x∗ (τ ∗ − F (c)) β∆
1− β + βτ ∗

βτ ∗ + (1− β) (1− τ ∗)
− β (1− x∗) ∆ max {F (c)− τ ∗, 0}

−F (c)E [ci|ci < c] .

Note that

∂Π (c∗, c)

∂c

1

f (c)
= ζvoice (τ ∗)− c−

0 if F (c) < τ ∗

β (1− x∗) ∆ if F (c) > τ ∗,

which is a strictly decreasing function of c, and ζvoice (·) is given by (16). Since f is strictly
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positive, f (0) > 0 and ∂Π(c∗,c)
∂c

1
f(c)
|c=0 > 0. Therefore, Π (c∗, c) is maximized at

arg max
c≥0

Π (τ ∗, c) =


ζvoice (τ ∗) if F (ζvoice (τ ∗)) < τ ∗

F−1 (τ ∗) if F (ζvoice (τ ∗)− β (1− x) ∆) ≤ τ ∗ ≤ F (ζvoice (τ ∗))

ζvoice (τ ∗)− β (1− x) ∆ if τ ∗ < F (ζvoice (τ ∗)− β (1− x) ∆) .

In equilibrium, we require c∗ (τ ∗) = F−1 (τ ∗). Therefore, τ ∗ must satisfy

ζvoice (τ ∗)− β (1− x (τ ∗)) ∆ ≤ F−1 (τ ∗) ≤ ζvoice (τ ∗) ,

as required.

Note that, in the proof of Lemma 4 above, and in the proofs of the main results of the voice

model below, we seemingly ignore the cost K the investor incurs when she does not satisfy her

shock. This is without loss of generality. The reason is the following. The application of the

Grossman and Perry (1986) refinement to the trade-only model ensures that, if in equilibrium

v+τ ∗∆ ≥ L/n (i.e. total portfolio value exceeds L), the investor sells exactly enough to satisfy

her liquidity needs. (Note that v + τ ∗∆ ≥ L/n is the region in which our main results hold.)

Moreover, it also implies that, if in equilibrium v + τ ∗∆ < L/n, the investor sells her entire

portfolio if she suffers a shock, and fully sells the bad firms and fully retains the good firms if

she does not suffer a shock. In this case, the investor incurs the cost K whenever she suffers

a shock. She is unable to avoid this by monitoring more: since her monitoring is unobserved

by the market makers, it does not affect the prices she receives upon selling, and so will not

allow her to meet the liquidity need.

We now move to the proofs of the statements in Section 2.

Proof of Lemma 1. For separate ownership, see the proofs of Proposition 4. For common

ownership, recall that in equilibrium, τ ∗ ∈ arg maxτ∈[0,1] Π (τ ∗, τ), where Π (τ ∗, τ) is defined in

Lemma 4. Since all firms are ex-ante identical, the investor will necessarily monitor the mass

of nτ ∗ firms with the lowest monitoring costs. That is, the investor will monitor firm i if and

only if c̃i ≤ F−1 (τ ∗), as required.

Proof of Proposition 4. We solve for the investor’s monitoring threshold. Note that even
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if the investor chooses τ 6= τ ∗, she still faces prices as given by (4), where the market maker

anticipates monitoring probability τ ∗. Therefore, as in the proof of Proposition 1, the investor

has incentives to follow the trading strategy prescribed by (3). She thus chooses vi = v if and

only if

c̃i/n ≤ Vso (v, τ ∗)− Vso (v, τ ∗) , (39)

where Vso (vi, τ) is given in the proof of Proposition 3 by (28). This holds if and only if

c̃i/n ≤ v − βxso (τ ∗)

n
(v − pso (τ ∗))− v − xso (τ ∗)

n
(pso (τ ∗)− v)⇔

c̃i/n ≤ ∆

[
1− βxso (τ ∗)

n

1

βτ ∗ + 1− τ ∗

]
⇔

c̃i/n ≤ φvoice (τ ∗)

Thus, the cutoff in any equilibrium must satisfy c∗/n = φvoice (τ ∗). In equilibrium, τ ∗ = F (c∗),

and hence, c∗so,voice must solve c∗/n = φvoice (F (c∗)), as required. Note that as a function of

c∗, φvoice (F (c∗)) is strictly positive and bounded from above. Therefore, a strictly positive

solution always exists. If ∆β − v (1− β) ≤ 0, then φvoice (F (c∗)) is decreasing in c∗ and so the

solution is unique.28 Note that since Vso (vi, τ) is derived from Proposition 1, the equilibrium

is characterized by Proposition 1, where τ is given by τ ∗so,voice.

For the comparative statics, note that an equilibrium c∗ is defined implicitly as the solution

to g(c∗) ≡ φvoice(F (c∗))− c∗/n = 0. Furthermore, stable equilibria satisfy

∂φvoice(F (c∗))

∂c∗
<

1

n
,

which implies ∂g(c∗)
∂c∗

< 0. Therefore, by the implicit function theorem, the response of c∗ to a

given parameter (except for n and F (·)) will have the same sign as the partial derivative of

φvoice(F (c∗)) with respect to c∗.

• For L, we have

∂φvoice(τ)

∂L
=

−∆β 1/n
v+(∆β−v(1−β))τ

< 0 if L/n
v+(∆β−v(1−β))τ

< 1
βτ+1−τ

0 otherwise,
(40)

28For the comparative statics we restrict attention to stable equilibria, i.e. ones for which nφvoice (F (c∗))
crosses the 45-degree line from above.
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and so c∗ is weakly decreasing in L.

• For ∆, since ∂φvoice(τ)
∂∆

> 0, c∗ is increasing in ∆.

• For v, we have

∂φvoice(τ)

∂v
=

∆β (1−(1−β)τ)L/n
(v+(∆β−v(1−β))τ)2 > 0 if L/n

v+(∆β−v(1−β))τ
< 1

βτ+1−τ

0 otherwise,
(41)

and so c∗ is weakly increasing in v.

• For n, as n increases, c/n decreases and φvoice(τ) increases, both of which increase c∗.

• For β, we have

∂φvoice(τ)

∂β
=

−∆ v(1−τ)L/n
(v+(∆β−v(1−β))τ)2 < 0 if L/n

v+(∆β−v(1−β))τ
< 1

βτ+1−τ

−∆ 1−τ
(1−τ−βτ)2 < 0 otherwise,

(42)

and so c∗ is decreasing in β.

• For F (·), consider two distributions such that FG(c) > FB(c) for all c. There are two

cases to consider. First, suppose ∆β − v(1 − β) < 0. Then, φvoice(τ) is decreasing in τ .

Consider the equilibrium cutoffs under FB(c) and FG(c), denoted c∗B and c∗G, respectively.

We have

c∗B/n = φvoice (FB(c∗B)) = ∆

[
1− βmin

{
L/n

v + (∆β − v (1− β))FB(c∗B)
,

1

βFB(c∗B) + 1− FB(c∗B)

}]
> ∆

[
1− βmin

{
L/n

v + (∆β − v (1− β))FG(c∗B)
,

1

βFG(c∗B) + 1− FG(c∗B)

}]
= φvoice (FG(c∗B)) .

Therefore, since φvoice(τ) is decreasing, it must be that c∗G < c∗B. Thus, the cutoff is higher

under distribution FB(c). However, this also implies that τ ∗B < τ ∗G, and so governance

improves under FG(c).
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Second, suppose ∆β − v(1− β) > 0. Consider the case where both τ ∗G and τ ∗B satisfy

L/n

v + (∆β − v (1− β)) τ ∗
<

1

βτ ∗ + 1− τ ∗
.

Then, we have φvoice(τ) increasing in τ over this region. Therefore,

c∗B/n = φvoice (FB(c∗B)) = ∆

[
1− βmin

{
L/n

v + (∆β − v (1− β))FB(c∗B)
,

1

βFB(c∗B) + 1− FB(c∗B)

}]
< ∆

[
1− βmin

{
L/n

v + (∆β − v (1− β))FG(c∗B)
,

1

βFG(c∗B) + 1− FG(c∗B)

}]
= φvoice (FG(c∗B)) .

This implies that there exists a c∗G > c∗B with φvoice (FG(c∗G)) = c∗G and is a stable

equilibrium. This in turn implies τ ∗G > τ ∗B.

Proof of Proposition 5. We prove the result in three parts. First, suppose v ≤ L/n.

Based on Proposition 2, the equilibrium must be type-(iii). Based on part (iii) of Lemma 4,

the monitoring threshold must solve c∗ = φvoice (F (c∗)). Note that φvoice (F (c)) is continuous,

φvoice (F (0)) = ∆ (1− β) and φvoice (1) = ∆(1−min{ L/n
v+∆

, 1}), and hence, by the intermediate

value theorem, a solution always exists. Given a threshold that satisfies c∗ = φvoice (F (c∗)), by

construction there is a type-(iii) equilibrium with this threshold.

Second, suppose L/n ≤ v (1− F (∆)). Based on Lemma 4, in any equilibrium the threshold

is smaller than ∆. Therefore, L/n ≤ v (1− τ ∗), and based on Proposition 2, the equilibrium

must be type-(i). Based on part (i) of Lemma 4, and given that L/n ≤ v (1− F (∆))⇒ ∆ ≤
1−F−1

(
1− L/n

v

)
, we have c∗ = ∆. By construction, there is a type-(i) equilibrium with such

a threshold.

Third, suppose v (1− F (∆)) < L/n < v. We first analyze which equilibria are sustain-

able in this range, and then compare the efficiency of the sustainable equilibria. Starting

with the first step, we prove that if v (1− F (∆)) < L/n < v, there always exists a type-(ii)

equilibrium where the monitoring threshold is given by part (ii) of Lemma 4, i.e. the largest

solution of c∗ = ζvoice (F (c∗)). In particular, it is sufficient to show that c∗ = ζvoice (F (c∗))
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has a solution such that F−1
(

1− L/n
v

)
< c∗ (which is equivalent to v (1− τ ∗) < L/n). In-

deed, when c∗ = F−1
(

1− L/n
v

)
then ζvoice (F (c∗)) = ∆. Since v (1− F (∆)) < L/n, then

c∗ = F−1
(

1− L/n
v

)
⇒ ζvoice (F (c∗)) > F−1

(
1− L/n

v

)
. Furthermore, when F (c∗) = 1 then

ζvoice (F (c∗)) = ∆
[
1− L/n

v+∆τ

]
<∞, since F (c∗) = τ ∗ = 1. Since ζvoice (F (c∗)) is continuous in

c∗, by the intermediate value theorem, a solution strictly greater than F−1
(

1− L/n
v

)
always

exists. By construction, there is a type-(ii) equilibrium with such a threshold.

We now move to the efficiency comparison of the various equilibria. We first show that, for

v (1− F (∆)) < L/n < v, any type-(i) equilibrium is less efficient than a type-(ii) equilibrium.

Based on Lemma 4, if the equilibrium is type-(i), then c∗ = min
{

∆, F−1(1− L/n
v

)
}

. However,

v (1− F (∆)) < L/n implies c∗ = F−1(1− L/n
v

) < c∗ii.

Next, consider type-(iii) equilibria. When L/n < v, such equilibria exhibit x∗p∗ = L/n,

where p∗ = v + ∆ βτ
βτ+1−τ . Therefore, whenever these equilibria exist,

φvoice (τ) ≡ ∆

[
1− β L/n

v + (∆β − v (1− β)) τ

]
.

Note that ζvoice (τ) > φvoice (τ) if and only if

∆

1− L/n− v (1− τ)

v
(

1−β
β

(1− τ) + τ
)

+ ∆τ

1− β + βτ

τ

 > ∆

[
1− β L/n

v + (∆β − v (1− β)) τ

]
⇔

(
1− β

1− β + βτ
+

βτ

1− β + βτ

v

v + (∆β − v (1− β)) τ

)
L/n < v. (43)

Also note that

1 ≥ 1− β
1− β + βτ

+
βτ

1− β + βτ

v

v + (∆β − v (1− β)) τ
⇔ β ≥ v

v + ∆
.

Therefore, if β ≥ v
v+∆

, then (43) always holds, which implies that the most efficient equilibrium

is type-(ii). In this case, y = y = v. In other words, whenever a type-(ii) equilibrium exists

(i.e. v (1− F (∆)) < L/n < v), it is the most efficient equilibrium.
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Suppose β < v
v+∆

. Note that (43) is equivalent to Λ (τ) < 0, where

Λ (τ) = τ 2 − τ

[
v

∆+v
v

∆+v
− β
− 1− β

β

]
v − L/n

v
− 1− β

β

v
∆+v
v

∆+v
− β

v − L/n
v

.

Note that min Λ (τ) < 0. Also, recall v (1− τ ∗∗ii ) < L/n. Therefore, it is sufficient to focus

on the region where v (1− τ) < L/n ⇔ v−L/n
v

< τ . It can be verified that Λ
(
v−L/n
v

)
< 0.

Therefore, there is τ̂ > v−L/n
v

such that Λ (τ) ≥ 0⇔ τ ≥ τ̂ where τ̂ is the largest root of Λ (τ),

given by

τ̂ =
1

2

v − L/n
v

(
v

∆+v
v

∆+v
− β
− 1− β

β

)
+

1

2

v − L/n
v

√√√√( v
∆+v
v

∆+v
− β
− 1− β

β

)2

+ 4
1− β
β

v
∆+v
v

∆+v
− β

v

v − L/n
.

Note that a type-(iii) equilibrium requires

v
1− τ

βτ + 1− τ
< L/n⇔ 1

1 + L/n
v−L/nβ

< τ

where v−L/n
v

< 1

1+
L/n
v−L/nβ

. Also note that τ ∗ < F (∆) in both a type-(ii) and type-(iii) equilib-

rium. Therefore, the relevant range is

τ ∈

[
1

1 + L/n
v−L/nβ

, F (∆)

]
.

This interval is non-empty if and only if

v

1 + F (∆)
1−F (∆)

β
< L/n⇔ v − L/n

L/n

1− F (∆)

F (∆)
< β.

Note that v (1− F (∆)) < v

1+
F (∆)

1−F (∆)
β

for all β. Since β < v
v+∆

if L/n < v

1+
F (∆)

1−F (∆)
v

v+∆

, the most

efficient equilibrium is type-(ii). This establishes the existence of y, the threshold below which

a type-(ii) equilibrium is most efficient.

Suppose
v − L/n
L/n

1− F (∆)

F (∆)
< β <

v

v + ∆
. (44)
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Note that if β < v
v+∆

then φvoice (τ) is a decreasing function, and so τ ∗∗iii , given by the solution

of τ = F (φvoice (τ)), is unique. Therefore, the equilibrium with τ ∗∗iii is most efficient if and only

if

max

{
1

1 + L/n
v−L/nβ

, τ̂

}
< τ ∗∗iii .

We argue that τ̂ ≥ 1

1+
L/n
v−L/nβ

. To see why, we first prove that

τ̂ < x⇔
v

∆+v
v

∆+v
− β

< x

1−β
β

+ x v
v−L/n

1−β
β

+ x
. (45)

To see this, note that

τ̂ ≥ x⇔

√√√√( v
∆+v
v

∆+v
− β
− 1− β

β

)2

+ 4
1− β
β

v
∆+v
v

∆+v
− β

v

v − L/n
≥ 2x

v

v − L/n
−

(
v

∆+v
v

∆+v
− β
− 1− β

β

)
⇔

2x
v

v − L/n
−

(
v

∆+v
v

∆+v
− β
− 1− β

β

)
< 0

or

2x
v

v − L/n
−

(
v

∆+v
v

∆+v
− β
− 1− β

β

)
≥ 0 and

4
1− β
β

v
∆+v
v

∆+v
− β

v

v − L/n
≥

[
2x

v

v − L/n

]2

− 2

[
2x

v

v − L/n

]( v
∆+v
v

∆+v
− β
− 1− β

β

)
⇔

2x
v

v − L/n
+

1− β
β

<

v
∆+v
v

∆+v
− β

or

2x
v

v − L/n
+

1− β
β

≥
v

∆+v
v

∆+v
− β

and

v
∆+v
v

∆+v
− β
≥
x1−β

β
+ x2 v

v−L/n
1−β
β

+ x
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Note

2x
v

v − L/n
+

1− β
β

>
x1−β

β
+ x2 v

v−L/n
1−β
β

+ x
⇔ 2x

v

v − L/n
1− β
β

+ x2 v

v − L/n
+

[
1− β
β

]2

> 0,

which proves (45). Using (45), we have

τ̂ >
1

1 + L/n
v−L/nβ

⇔
v

∆+v
v

∆+v
− β

>
1

1 + L/n
v−L/nβ

1−β
β

+ 1

1+
L/n
v−L/nβ

v
v−L/n

1−β
β

+ 1

1+
L/n
v−L/nβ

.

This eventually yields

β
v

∆+v
− β

(
1 +

L/n

v − L/n
β

)
> − L/n

v − L/n
β L/n
v−L/n (1− β)

1
β

+ L/n
v−L/n (1− β)

,

which always holds. Therefore, τ ∗∗iii is most efficient only if τ̂ < τ ∗∗iii and β < v
v+∆

, i.e.

v
∆+v
v

∆+v
− β

< τ ∗∗iii

1−β
β

+ τ ∗∗iii
v

v−L/n
1−β
β

+ τ ∗∗iii
.

Note that limL/n→v τ
∗∗
iii > 0 = limL/n→v τ̂ . By continuity, there is y ∈ [y, v) such that, if

L/n > y, the most efficient equilibrium is type-(iii). This completes the proof.

Proof of Corollary 1. Recall from Proposition 5 that

c∗∗co,voice =


∆ if L/n ≤ v (1− F (∆))

max{c∗∗ii , c∗∗iii} if v (1− F (∆)) < L/n < v

c∗∗iii if v ≤ L/n.

(46)

It is straightforward to see that φvoice (·) and ζvoice (·) are decreasing in L/n. Our focus on stable

equilibria (the RHS of equations c = φvoice (F (c)) and c = ζvoice (F (c)) cross the 45-degree line

from above) implies that c∗∗ii and c∗∗iii are decreasing in L/n. Therefore, max {c∗∗ii , c∗∗iii} is also

decreasing in L/n. Finally, note that ∆ > max {c∗∗ii , c∗∗iii} ≥ c∗∗iii. Therefore, c∗∗co,voice is globally

decreasing in L/n.
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The second statement follows directly from Proposition 5, the observation that c∗∗co,voice =

c∗∗so,voice when n = 1 and c∗∗co,voice = c∗∗iii, where c∗∗so,voice is the largest solution of c∗/n =

φvoice (F (c∗)) .

Proof of Proposition 6. Suppose L > 0. Let c∗so (n, L) be a solution of c∗ = nφvoice (F (c∗))

that constitutes a stable equilibrium (i.e., nφvoice (F (c∗)) crosses the 45 degree line from above)

under separate ownership. Note that nφvoice (F (·)) is strictly increasing in n. Therefore,

c∗so (n, L) locally increases in n as well. Since for a given c∗ we have limn→∞ nφvoice (F (c∗)) =∞,

limn→∞ c
∗
so (n, L) = ∞ as well. In addition, c∗so (1, L) < ∆. It follows that there is n > 1 such

that if n > n then the smallest solution of c∗ = nφvoice (F (c∗)) is strictly greater than ∆. Since

c∗∗co,voice ≤ ∆, if n > n then any equilibrium under separate ownership is strictly more efficient

than any equilibrium under common ownership. This completes part (i).

Consider part (ii). Since φvoice (F (c∗)) < ∆, there is n (L) > 1 such that the largest solution

of c∗ = nφvoice (F (c∗)), denoted by c∗so (n, L), is strictly smaller than ∆ if n < n (L). Note that

n (L) satisfies c∗so (n (L) , L) = ∆. Recall from Lemma 4 part (i) that if L/n ≤ v (1− τ ∗) then

in any equilibrium under common ownership it must be c∗ = ∆. Based on Proposition 5, in

any equilibrium under common ownership τ ∗ ≤ F (∆). Therefore, if L/n ≤ v (1− F (∆)) then

c∗ = ∆ in any equilibrium under common ownership. Since an equilibrium under common

ownership always exists according to Proposition 5, we conclude that if n < n (L) and L ≤
v (1− F (∆)) then indeed any equilibrium under common ownership is strictly more efficient

than any equilibrium under separate ownership. Therefore, there exists L∗ ≥ v (1− F (∆)) as

required.

Proof of Proposition 7. Given threshold c and number of firms n, the investor’s net payoff

under separate and common ownership, respectively, are

Πso,voice (n, c) = n (v + F (c) ∆)− F (c)E [ci|ci < c]

Πco,voice (n, c) = n (v + F (c) ∆)− nF (c)E [ci|ci < c] .

Note that Πco,voice (1, c) = Πso,voice (1, c) for any fixed c, that Πco,voice (n, c) and Πso,voice (n, c)

have a unique maximum at ∆ and n∆ respectively, and that in any equilibrium c∗so,voice ≤ ∆ and

c∗co,voice < n∆. Moreover, under the conditions of part (ii) of Proposition 6, c∗so,voice < c∗co,voice
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under any equilibrium of common and separate ownership.

Proof of Corollary 2. Consider separate ownership. If the market maker expects the

investor to monitor w.p. τ ∗, then the price of any on-equilibrium trade must be p = v + τ ∗∆.

Since the investor only raises θ, then x (τ ∗) = nmin
{

1, L/n
v+τ∗∆

}
. She will monitor if and only

if:

(1− β)n (v + ∆) + β [x (τ ∗) p+ (n− x (τ ∗)) (v + ∆)]− ci
≥ (1− β)nv + β [x (τ ∗) p+ (n− x (τ ∗)) v]⇔

ci ≤ ∆ (n− βx (τ ∗)) .

Therefore, the equilibrium monitoring threshold must be a solution of

c∗ = ∆ (n− βx (τ ∗)) ,

which always exists.

Under common ownership, the investor’s expected payoff per firm is given by

Π (c, c∗) = β
x (τ ∗)

n
(v + τ ∗∆) +

(
1− βx (τ ∗)

n

)
(v + F (c) ∆)− F (c)E [ci|ci < c]

The first-order condition implies

c∗ = (1− βx (F (c∗)) /n) ∆,

and so per-security monitoring incentives are identical to the separate ownership benchmark.

A.3 Proofs of Section 3

Proof of Lemma 2. Suppose in equilibrium under ownership structure χ ∈ {so, co}
the market believes that the manager works w.p. τ ∗χ. From (18), if the manager chooses

vi = v his expected utility is R + ωPχ
(
v, τ ∗χ

)
− c̃i, and if he chooses vi = v his expected

utility is R + ωPχ
(
v, τ ∗χ

)
. Therefore, he chooses vi = v if and only if c̃i ≤ c∗ ≡ R − R +
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ω
[
Pχ
(
v, τ ∗χ

)
− Pχ

(
v, τ ∗χ

)]
.

Proof of Proposition 8. In equilibrium, the market and the investor believe the manager

follows threshold c∗. Given (3) and (4), the manager expects the price to be Pso (vi, F (c∗)) if

he chooses vi. Therefore, he chooses vi = v if and only if

R + ωPso (v, F (c∗))− c̃i ≥ R + ωPso (v, F (c∗)) , (47)

where Pso (vi, τ) is explicitly given in the proof of Proposition 3. In equilibrium, c∗ must

solve (20). Using the explicit formulation of Pso (vi, τ), it follows that (20) is equivalent to

c∗ = φexit (F (c∗)). Note that φexit (τ) is decreasing in τ and is bounded from above and below.

Therefore, a solution always exists and is unique, as required. The equilibrium is characterized

by Proposition 1, where τ is given by τ ∗so,exit.

For the comparative statics, note that φexit(τ) is strictly decreasing in τ , and so there is a

unique equilibrium. Furthermore, the derivative of φexit(τ) with respect to a given parameter

has the same sign as the response of c∗ to that parameter. Therefore, the threshold increases

with ∆, ω, and R−R. We also have

∂φexit(τ)

∂β
= −∆ω

1− τ
(βτ + 1− τ)2

< 0,

implying that the threshold decreases in β.

Finally, consider two distributions FG(·) > FB(·) and their respective equilibrium cutoffs

c∗G and c∗B. Then, we have

c∗B = φexit(FB(c∗B)) > φexit(FG(c∗B)). (48)

With φexit(τ) decreasing in τ , this implies that c∗G < c∗B. Furthermore, since

c∗B = φexit(FB(c∗B)) < φexit(FG(c∗G)) = c∗G, (49)

we must have τ ∗G > τ ∗B.

Proof of Proposition 9. First, suppose v ≤ L/n. Based on Proposition 2, any equilibrium
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is type-(iii). Therefore, c∗∗co,exit = c∗so,exit in this range. Similar to the proof of Proposition 2

part (iii) and Proposition 8, such an equilibrium indeed exists.

Second, suppose v
(
1− τ ∗∗ii,exit

)
< L/n < v. Based on Proposition 2, any equilibrium is

either type-(ii) or type-(iii). Consider a type-(ii) equilibrium. The manager has incentives to

choose vi = v if and only if

R + ω [βpco (τ ∗) + (1− β) v]− c̃i ≥ R + ω [βv + (1− β) pco (τ ∗)] . (50)

Using pco (τ) = v + ∆ βτ
βτ+(1−β)(1−τ)

, we obtain vi = v ⇔ c̃i ≤ ζexit(τ
∗). Therefore, c∗ must

solve c∗ = ζexit (F (c∗)). Similar to the proof of Proposition 2 part (ii), if τ = τ ∗∗ii,exit then

indeed an equilibrium with these properties indeed exists. By definition of c∗∗ii,exit, such an

equilibrium is more efficient than any other type-(ii) equilibrium. Moreover, simple algebra

shows that ζexit (τ) > φexit (τ), and so c∗∗ii,exit > c∗so,exit. That is, an equilibrium with τ = τ ∗∗ii,exit

is more efficient than any equilibrium with the properties of part (iii). Finally, to show that

an equilibrium with τ = τ ∗∗ii,exit is more efficient than any type-(i) equilibrium, note that based

on part (i) of Proposition 2, the threshold of the alternative equilibrium must satisfy L/n ≤
v (1− τ ∗). However, since by assumption v

(
1− τ ∗∗ii,exit

)
< L/n, it follows that τ ∗ < τ ∗∗ii,exit, that

is, the alternative equilibrium must be less efficient.

Third, suppose L/n ≤ v
(
1− τ ∗∗ii,exit

)
. We argue that a type-(i) equilibrium exists. If

true, then this equilibrium is more efficient than any type-(ii) or type-(iii) equilibrium. We

argue that the following strategies are an equilibrium: the manager’s working threshold is

c∗∗ = min{R−R + ∆ω, F−1(1− L/n
v

)}, the investor’s trading strategy is

x∗ (vi, θ) =


0 if vi = v

1 w.p. 1− η∗ and 0 otherwise if vi = v and θ = 0

1 if vi = v and θ = L,

(51)

where

η∗ =


0 if R−R + ∆ω ≤ F−1(1− L/n

v
)

1
1−β

1−L/n
v

ω∆

R−R+ω∆−F−1(1−L/nv )
−L/n

v

otherwise
, (52)
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and prices are

p∗i (xi) =

v + ∆ F (c∗∗)
F (c∗∗)+(1−β)η∗(1−F (c∗∗))

if xi = 0

v if xi > 0.
(53)

If the above equilibrium indeed exists, note that it is must be the most efficient equilibrium

among all type-(i) equilibria, and hence the most efficient equilibrium. To understand why, first

note that if c∗∗ = R−R+ ∆ω then the equilibrium exhibits maximum governance, and hence,

by definition, no other equilibrium is strictly more efficient. However if c∗∗ = F−1(1− L/n
v

) then

v (1− F (c∗∗)) = L/n. Therefore, any other type-(i) equilibrium must satisfy L/n ≤ v (1− τ ∗),
and hence, τ ∗ ≤ F (c∗∗), which implies that threshold c∗∗ is more efficient.

We now prove that the above equilibrium indeed exists. First note that the prices in

this equilibrium follow from the investor’s trading strategy and the application of Bayes’ rule.

Second, given these prices, the investor’s trading strategy is optimal. Indeed, note that L/n ≤
v (1− F (c∗∗)), and so the investor can satisfy her liquidity needs by selling only bad firms.

Since xi > 0 ⇒ p∗i = v, the investor has strict incentives to fully retain good firm, and weak

incentives to sell bad firms. The manger works if and only if

R + ωp∗i (0)− c̃i ≥ R + ω [βv + (1− β) (η∗p∗i (0) + (1− η∗) v)]⇔

R−R + ω (1− (1− β) η∗) (p∗i (0)− v) ≥ c̃i

Using the explicit form of p∗i (0) as given above, the manager works if and only if

R−R + ω (1− (1− β) η∗) ∆
F (c∗∗)

F (c∗∗) + (1− β) η∗ (1− F (c∗∗))
≥ c̃i ⇔

H (η∗, c∗∗) ≥ c̃i

where

H (η, c) = R−R + ω∆

(
1− 1

F (c)
1−β

1
η

+ 1− F (c)

)
is a continuous function of η and c, and it strictly decreases in η, when η > 0. There are two

cases to consider. First, if R − R + ∆ω ≤ F−1(1 − L/n
v

) then H (0, c∗∗) = R − R + ω∆, as

required. Second, suppose R − R + ∆ω > F−1(1 − L/n
v

) and note that H (1, c) < ζexit (F (c))

for all c. Recall, L/n ≤ v
(
1− τ ∗∗ii,exit

)
⇒ c∗∗ii,exit ≤ F−1(1 − L/n

v
), where c∗∗ii,exit is the largest
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solution of c∗∗ii,exit = ζexit
(
F
(
c∗∗ii,exit

))
. Therefore,

ζexit

(
F

(
F−1(1− L/n

v
)

))
< F−1(1− L/n

v
)⇒

H

(
1, F−1(1− L/n

v
)

)
< ζexit

(
F

(
F−1(1− L/n

v
)

))
⇒

H

(
1, F−1(1− L/n

v
)

)
< F−1(1− L/n

v
).

Also note that

H

(
0, F−1(1− L/n

v
)

)
= R−R + ω∆ > F−1(1− L/n

v
).

Therefore,

H

(
1, F−1(1− L/n

v
)

)
< F−1(1− L/n

v
) < H

(
0, F−1(1− L/n

v
)

)
,

and by the intermediate value theorem, there is η̂ ∈ (0, 1) such that H
(
η̂, F−1(1− L/n

v
)
)

=

F−1(1 − L/n
v

). Since H (η, c) is decreasing in η, η̂ is uniquely defined. Finally, one can verify

that

H

 1

1− β
1− L/n

v

ω∆

R−R+ω∆−F−1(1−L/n
v

)
− L/n

v

, F−1(1− L/n

v
)

 = F−1(1− L/n

v
),

implying that η∗ ∈ (0, 1) as required.

Proof of Proposition 10. First, for L/n ≤ v(1 − τ ∗∗ii,exit), c
∗∗
co,exit = min{R − R +

∆ω, F−1
(

1− L/n
v

)
}, which is decreasing in L/n. Note also at L/n = v(1 − τ ∗∗ii,exit), this

implies that c∗∗co,exit = F−1
(

1− L/n
v

)
= F−1(τ ∗∗ii,exit) = c∗∗ii,exit. Furthermore, c∗∗ii,exit is not de-

pendent on L/n. Altogether, this implies that c∗∗co,exit is continuous and weakly decreasing in

L/n for L/n < v. Note that for v ≤ L/n, c∗∗co,exit = c∗so,exit, which is constant in L/n. Finally,

since ζexit(τ) > φexit(τ) for all τ , c∗∗co,exit = ζ(F (c∗∗co,exit)) > φexit(F (c∗∗co,exit)). Since φexit(F (c)) is

decreasing in c, it implies that c∗so,exit such that φexit(F (c∗so,exit)) = c∗so,exit is strictly less than

c∗∗co,exit. This confirms that c∗∗co,exit is decreasing in L/n, and furthermore that c∗∗co,exit > c∗so,exit

for v < L/n. The fact that for v ≤ L/n we have c∗∗co,exit = c∗so,exit trivially shows that cutoff
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is identical under common and separate ownership for such values of L/n. This complete the

proof.

While Proposition 9 focuses on the most efficient equilibrium, Proposition 12 compares

governance under separate and common ownership when taking into account all equilibria.

Proposition 12 (Comparison of equilibria, exit): For any L > 0, there is a unique β∗ (L) ∈
[0, 1) s.t.:

(i) If β ≥ β∗ (L), any equilibrium under common ownership is weakly more efficient than

the separate ownership benchmark.

(ii) If β < β∗ (L), there is an equilibrium under common ownership that is strictly less

efficient than the separate ownership benchmark. The least efficient equilibrium is type-

(i), where the threshold is given by the smallest solution of c∗ = q (F (c∗)) where

q (τ) = R−R + ω∆

(
1− 1

τ
γ∗(τ)

+ 1− τ

)
(54)

and γ∗ (τ) = 1− β L/n
v(1−τ)

.

(iii) β∗ (L) decreases with L, where β∗ (0) = 1 and L/n ≥ v
(
1− F

(
R−R

))
⇒ β∗ (L) = 0.

To prove Proposition 12, we start with an auxiliary lemma.

Lemma 5 There is an equilibrium under common ownership and exit in which the working

threshold satisfies L/n ≤ v (1− F (c∗)) if and only if L/n ≤ v
(
1− F

(
c∗exit,co

))
, where c∗exit,co

is the smallest solution of c∗ = q (F (c∗)) where q (τ) is given by (73).

Proof of Lemma 5. Suppose L/n ≤ v
(
1− F

(
c∗exit,co

))
. We argue that there exists an

equilibrium where the manager’s working threshold is c∗exit,co and the investor’s selling strategy

is

x∗ (vi, θ) =

0 w.p. η∗ and 1 w.p. 1− η∗ if vi = v and θ = L

0 otherwise,
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where

η∗ = 1− L/n

v(1− F
(
c∗exit,co

)
)
∈ [0, 1] .

Indeed, following Bayes’ rule, prices are given by

p (xi) = v + 1{xi=0} ×∆
F
(
c∗exit,co

)
F
(
c∗exit,co

)
+ (1− β + βη∗)

(
1− F

(
c∗exit,co

)) ,
and so the manager works if and only if

R + ω (β [η∗pi (0) + (1− η∗) v] + (1− β) pi (0)) < R + ωpi (0)− c̃i ⇔

q
(
F
(
c∗exit,co

))
> c̃i.

Note that a solution for c∗ = q (F (c∗)) always exists since q(F (0)) = R − R > 0 and

limc∗→∞ q(F (c∗)) < R − R + ω∆. Since L/n ≤ v
(
1− F

(
c∗exit,co

))
and, given prices, the

investor is indifferent between selling and retaining a bad firm, the strategy is weakly optimal.

Thus this equilibrium exists, as required.

Next, suppose L/n > v
(
1− F

(
c∗exit,co

))
. We argue that in any equilibrium, L/n >

v (1− F (c∗)). Suppose on the contrary there is an equilibrium where L/n ≤ v (1− F (c∗)),

and let τ ∗ = F (c∗). The equilibrium must be type-(i) and the following must hold:

• There is η ∈
[
0, 1− L/n

v(1−τ∗)

]
s.t. x∗ (v, L) ∈

[
L/n
v

1
(1−η)(1−τ∗) , 1

]
w.p. 1−η and x∗ (v, L) = 0

w.p. η.29

• There is ϕ ∈ [0, 1] s.t. x∗ (v, 0) > 0 w.p. 1− ϕ and x∗ (v, 0) = 0 w.p. ϕ.

• p∗i (0) = v + ∆ τ∗

τ∗+[(1−β)ϕ+βη](1−τ∗)

• c∗ = q̂ (F (c∗) , ϕ, η) where

q̂ (τ, ϕ, η) = R−R + ω∆

(
1− 1

1− τ + τ
(1−β)ϕ+βη

)
(55)

29In fact, the investor can mix between more than two quantities. However, since any positive quantity
leads to the same price v, without loss of generality we can assume that the investor mixes between only two
quantities, one of which is zero.
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Indeed, if θ = L, the investor sells at least L/n
v(1−τ∗) ∈ (0, 1] from the bad firms in aggregate,

to raise at least L. Let η be the probability that she retains a bad firm when θ = L. Note

that η ∈
[
0, 1− L/n

v(1−τ∗)

]
to ensure that at least L is raised. If θ = 0, she is indifferent between

selling and not selling a bad firm , since pi (xi) = v for xi > 0. Let ϕ be the probability that

she retains a bad firm when θ = 0. Then, by Bayes’ rule,

pi (0) = v + ∆
τ ∗

τ ∗ + [(1− β)ϕ+ βη] (1− τ ∗)

and the manager works if and only if

R + ω (β [ηpi (0) + (1− η) v] + (1− β) [ϕpi (0) + (1− ϕ) v]) < R + ωpi (0)− c̃i ⇔

q (τ ∗, ϕ, η) > c̃i,

as required. Note that

q (τ) ≤ q̂ (τ, ϕ, η)⇔ η ≤ 1− (1− β)ϕ

β
− L/n

v(1− τ)

Note that 1−(1−β)ϕ
β

≥ 1, and hence, η ≤ 1 − L/n
v(1−τ)

⇒ η ≤ 1−(1−β)ϕ
β

− L/n
v(1−τ)

. This implies

that any solution of c∗ = q̂ (F (c∗) , ϕ, η) is weakly larger than c∗exit,co. But since L/n >

v
(
1− F

(
c∗exit,co

))
, then it must be L/n > v (1− F (c∗)) as well.

The full proof of Proposition 12 now follows.

Proof of Proposition 12. Suppose L/n ≥ v(1 − F (R − R)). Since the threshold in every

equilibrium satisfies c∗ > R − R, L/n ≥ v(1 − F (R − R)) implies that any equilibrium must

involve selling good firms. In this case, as in the arguments in the proof of Proposition 9,

the cutoff rule under common ownership satisfies either c∗ = φexit(F (c∗)) or c∗ = ζexit(F (c∗)).

Since c∗so,exit = φexit
(
F
(
c∗so,exit

))
and φexit(τ) < ζexit(τ) for all τ , and since φexit(τ) is decreasing

in τ , all equilibria under common ownership are weakly more efficient than under separate

ownership, that is, β∗(L) = 0.

Suppose L/n < v
(
1− F

(
R−R

))
. Let c∗ (β, L) ≡ c∗exit,co as a function of β and L, where

c∗exit,co is defined in Lemma 5. Note that c∗ (β, L) is strictly increasing in β and c∗ (0, L) =

R−R < c∗ (1, L). Also note that c∗so,exit(β), the unique separate ownership equilibrium cutoff
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as a function of β, is strictly decreasing in β, where c∗so,exit(0) > R − R = c∗so,exit(1). Thus,

there exists a unique λ(L) ∈ (0, 1) such that

c∗ (β, L) ≥ c∗so,exit (β)⇔ β ≥ λ (L) . (56)

Suppose β ≥ λ(L). Consider the following two cases.

1. If L/n ≤ v (1− F (c∗ (β, L))) then, based on Lemma 5, an equilibrium with cutoff rule

c∗ (β, L) exists. Moreover, based on Lemma 5, c∗ (β, L) is the lowest cutoff among

all equilibria that satisfy L/n ≤ v (1− F (c∗)). Any other equilibrium that satisfies

L/n > v (1− F (c∗)), implies F (c∗) > 1− L/n
v
≥ F (c∗ (β, L)), and hence, is strictly more

efficient. So, c∗ (β, L) is the cutoff of the least efficient equilibrium under common own-

ership. Since β ≥ λ(L)⇒ c∗ (β, L) ≥ c∗so,exit (β), all equilibria under common ownership

are more efficient than the separate ownership benchmark.

2. If L/n > v (1− F (c∗ (β, L))) then, based on Lemma 5, any equilibrium under common

ownership satisfies L/n > v (1− F (c∗)). In this case, the equilibrium cutoff rules are

the set {c∗∗ii,exit, c∗so,exit(β)}. According to Proposition 9, c∗∗ii,exit > c∗so,exit(β), and hence,

the equilibrium cutoff is weakly larger than c∗so,exit(β). Therefore, common ownership is

weakly more efficient than separate ownership for β ≥ λ(L).

Next, suppose instead that β < λ(L). We proceed in several steps.

1. We first argue that there is a unique L∗∗ ∈
(
0, nv

(
1− F

(
R−R

)))
s.t.

L ≤ nv
(
1− F (c∗so,exit(λ(L)))

)
⇔ L ≤ L∗∗. (57)

To see why, note that c∗ (β, L) weakly increases in L, and so λ (L) weakly decreases in

L. Since c∗so,exit (β) decreases in β, c∗so,exit (λ (L)) weakly increases in L. Moreover, since

limL→0 c
∗ (β, L) = R−R and β < 1⇒ c∗so,exit (β) > R−R, limL→0 λ (L) = 1. Therefore,

lim
L→0

1− F (c∗so,exit (λ (L)))

L
=

1− F (c∗so,exit (1))

limL→0 L
=

1− F
(
R−R

)
limL→0 L

>
1

nv
.
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Note also that L > 0⇒ λ (L) < 1, and so c∗so,exit (λ (L)) > R−R. Therefore,

lim
L→nv(1−F(R−R))

1− F (c∗so,exit (λ (L)))

L
=

1− F
(
c∗so,exit

(
λ
(
nv
(
1− F

(
R−R

)))))
nv
(
1− F

(
R−R

))
<

1− F
(
R−R

)
nv
(
1− F

(
R−R

)) =
1

nv
.

By the intermediate value theorem, there is a unique L∗∗ ∈
(
0, nv

(
1− F

(
R−R

)))
s.t.

L ≤ nv
(
1− F

(
c∗so,exit (λ (L))

))
⇔ L ≤ L∗∗, as required.

2. We next argue L ≤ nv (1− τ ∗ (β, L)), with τ ∗ ≡ F (c∗ (β, L)), if and only if:

• L ∈ (0, L∗∗] and β < λ (L), or

• L ∈
(
L∗∗,

(
1− F

(
R−R

))
nv
)

and β < ϕ (L) , where ϕ (L) ∈ (0, λ (L)) solves

L = nv (1− τ ∗ (ϕ (L) , L)).

To see why, recall c∗ (β, L) is increasing in β where c∗ (0, L) = R − R. Therefore,

1− τ ∗ (β, L) is decreasing in β. Since c∗ (0, L) = R− R and L < nv
(
1− F

(
R−R

))
, if

β = 0 then L ≤ nv (1− τ ∗ (β, L)) holds. Recall also that c∗ (λ (L) , L) = c∗so,exit (λ (L))

and L ≤ nv
(
1− τ ∗so,exit (λ (L))

)
⇔ L ≤ L∗∗. Therefore, if L ∈ (0, L∗∗] then L ≤

nv (1− τ ∗ (β, L)) ∀ β < λ (L). Suppose L ∈
(
L∗∗, nv

(
1− F

(
R−R

)))
. Then L >

nv
(
1− τ ∗so,exit (λ (L))

)
and so L ≤ nv (1− τ ∗ (β, L)) ⇔ β < ϕ (L), where ϕ (L) ∈

(0, λ (L)) solves L = nv (1− τ ∗ (ϕ (L) , L)), as required.

3. Let

β∗ (L) =


λ (L) if L ≤ L∗∗

ϕ (L) if L ∈
(
L∗∗, nv

(
1− F

(
R−R

)))
0 if L ≥ nv

(
1− F

(
R−R

))
.

(58)

Based on the analysis of the case where L ≥ nv
(
1− F

(
R−R

))
, and the steps for the

case where L < nv
(
1− F

(
R−R

))
, β∗ (L) is as stated in the proposition. Note that, if

β < β∗ (L), we proved that an equilibrium with cutoff c∗ (β, L) exists, and its properties

are as stated in the proposition.
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4. Consider the properties of β∗ (L). Recall that we proved limL→0 λ (L) = 1, and so

β∗ (0) = 1. Note also that L ≥ nv
(
1− F

(
R−R

))
⇒ β∗ (L) = 0. We argue that

β∗ (L) decreases with L. To see this, first note that λ (L) = ϕ (L) ⇔ L = L∗∗, and

ϕ (L) = 0 ⇔ L = nv
(
1− F

(
R−R

))
. Recall we proved earlier that λ (L) weakly

decreases in L. Note that ϕ (L) is defined by L = 1 − F (c∗ (ϕ (L) , L)). Since c∗ (β, L)

increases in β and in L, 1 − F (c∗ (β, L)) decreases in β and L. Therefore, 1−F (c∗(β,L))
L

decreases in L, and so ϕ (L) must decrease in L as well.

As discussed in the main text, the inferior equilibria under common ownership exist under

small shocks, where the price upon selling is v and so the investor does not have strict incentives

to sell bad firms. In the least efficient equilibrium within this class, she retains bad firms with

certainty upon no shock and with the maximum frequency that still allows her to meet her

liquidity needs upon a shock. Overall, the unconditional probability of retention for a bad firm

is γ∗ (τ). This reduces the punishment for shirking, and also the reward for working by lowering

the price of a retained firm below v. This disadvantage is more pronounced, the greater the

frequency with which a bad firm is retained. This frequency is greater if β is low, since a bad

firm is always retained upon no shock, and if L is low, since a smaller shock allows the investor

to retain more bad firms upon a shock.

Proof of Proposition 11. Consider separate ownership. Suppose in equilibrium the manager

follows threshold c∗. Prices at t = 2 and the investor’s trades are as described by Proposition

1, given the threshold c∗. If there is a single investor, market makers learn nothing about vi

from observing xj. If there are multiple investors with perfectly correlated shocks, then if the

market maker observes that some other firms are fully retained, then it infers that a shock

did not occur. Thus, if xi = xso (τ ∗), the price falls to pi = v at t = 2.5, as the sale is fully

revealing of a bad firm. If it observes that all firms are at least partially sold, then it infers

that a shock occurred. Thus, if xi = xso (τ ∗), the price increases to the unconditional value of
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v + ∆τ . In all other cases, prices do not change. Therefore, the manager shirks if and only if

R + ω (β (v + ∆τ) + (1− β) v)− c̃i ≤ R + ω (β (v + ∆τ) + (1− β) v)⇔ (59)

R−R + ω (1− β) ∆ ≤ c̃i, (60)

and c∗ = c∗so,exit,obs, as required.

Consider common ownership. If v ≤ L/n then, based on part (iii) of Proposition 2, the equi-

librium has the same properties as in the separate ownership case. Therefore, prices at t = 2.5

will be the same, and the manager’s threshold is c∗so,exit,obs. Suppose v
(
1− F

(
R−R + ∆ω

))
<

L/n < v. We argue that there is a type-(ii) equilibrium. In this equilibrium, by observing all

other trades, the market can perfectly infer the value of each firm. Therefore, the manager’s

threshold will be the highest possible, R − R + ω∆. Since v
(
1− F

(
R−R + ∆ω

))
< L/n,

the investor does not have enough bad firms to satisfy her shock, and a type-(ii) equilibrium

indeed exists. Finally, suppose L/n ≤ v
(
1− F

(
R−R + ∆ω

))
. We argue that there is a

type-(i) equilibrium where γ∗, given in the proof of Proposition 9, is zero. Then, prices at

t = 2.5 are fully revealing of firm value, and so the manager’s threshold must be R−R+ ∆ω.

Since L/n ≤ v
(
1− F

(
R−R + ∆ω

))
then investor has enough bad firms in equilibrium in

order to satisfy her shock. Based on the properties of a type-(ii) equilibrium, the investor is

indifferent between selling and retaining a bad firm, to the extent she raises enough revenue.

Therefore, playing γ∗ = 0 is weakly optimal, as required.

B Common Monitoring Cost: Analysis

This section shows that the model is very similar if there is a common monitoring cost and the

investor’s private information is instead over whether monitoring has been successful. In each

firm i, the investor now chooses λi ∈ [0, 1], the probability of vi = v. She incurs a cost C (λi),

where C ′ > 0, C ′ (0) > 0, and C ′ (1) =∞. This monitoring technology is common to all firms.

Whether monitoring succeeds is i.i.d. and privately observed by the investor.

The investor chooses λ∗ ∈ (0, 1) such that, in equilibrium, each firm has value v w.p. λ∗ and

v otherwise. Thus, the equilibrium is the same as in the core model, except that λ∗ replaces
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τ ∗. Under separate ownership, λ∗ solves

max
λ∈[0,1]

λ (β [v (n− x) + xpi(x)] + (1− β)nv) + (1− λ) (v (n− x) + xpi(x))− C (λ)

⇔ φvoice (λ∗) = C ′ (λ∗) /n,

compared to φvoice (F (c∗)) = c∗/n in the core model. Thus, the equilibrium has the same

properties, and is exactly the same if C ′ (·) = F−1 (·).
Under common ownership, λ is applied to all firms in a symmetric equilibrium (since they

are ex ante identical), and so the investor’s marginal aggregate monitoring cost is nC ′ (λ).

Under the core model, the investor effectively has an aggregate monitoring cost function given

by

g (c) = nF (c)E[ci|ci < c] = n

∫ c

0

rf (r) dr,

The investor’s problem can be written in terms of τ instead of c :

g (τ) = n

∫ F−1(τ)

0

rf (r) dr

g′ (τ) = n
(
F−1 (τ)

)′ [
F−1 (τ) f

(
F−1 (τ)

)]
= n

1

f (F−1 (τ))

[
F−1 (τ) f

(
F−1 (τ)

)]
= nF−1 (τ)

Thus, as with common ownership, the equilibrium has the same properties as the core model

and is identical if the marginal cost of monitoring, C ′ (·), equals F−1 (τ).

C Extensions: Analysis

C.1 Endogenous Information Acquisition

In this section, we consider a variant of the trade-only model in which the investor is initially

uninformed about the value of each firm. This extension shows that, contrary to conventional

wisdom, common ownership can increase the incentives to gather information.

For firm i, she can pay a cost ci with CDF F (ci) to learn firm value vi ∈ {v, v}, where ci is

independent of vi. We refer to paying this cost as “investigating” or “acquiring information”.

Thus, the expected value of a firm to the investor is v + τ∆ if she has not investigated, and
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either v or v if she has. Having decided which firms to investigate, she observes their values

and chooses how much to sell.

As in the baseline model, we let xi(vi, θ) denote the selling strategy for firm i where the

firm has expected value vi ∈ {v, v+τ∆, v} and the investor faces liquidity shock θ. Proposition

13 describes the equilibrium under separate ownership.

Proposition 13 (Information Acquisition, Separate Ownership): Consider the model with

information acquisition and separate ownership. In any equilibrium, the investor investigates

if and only if ci ≤ c∗so,info, where c∗so,info is unique and defined by the solution to:

c∗ = β (1− β) τ(1− τ)n∆ min

{
L/n

v[F (c∗)(1−β)(1−τ)+β]+∆βτ
,

1
F (c∗)(1−β)(1−τ)+β

}
(61)

The equilibrium can be implemented with selling strategies

xi (vi, θ) =

0 if vi ∈ {v + τ∆, v} and θ = 0

x ≡ n×min
{

L/n
p∗i (x)

, 1
}

otherwise,

and prices that satisfy

p∗i (xi) =


v + ∆ τ

F (c∗so,info)τ+1−F (c∗so,info)
if xi = 0

v + ∆ βτ
F (c∗so,info)(1−β)(1−τ)+β

if xi ∈ (0, x]

v if xi > x.

Proof of Proposition 13. Let α∗ be the probability that the investor investigates in equi-

librium. Since the gross profit from investigation is bounded by n∆ < ∞, in any equilibrium

α∗ < 1. Moreover, since ci has full support on (0,∞), in any equilibrium α∗ > 0. We first

argue a set of results regarding the possible equilibrium selling strategies, similar to the proof

of Proposition 1.

1. If x′i ∈ xi(v, L) ∪ xi(v, 0) ∪ xi(v + τ∆, L), then x′i > 0. To see this, if θ = L, the investor

will sell a positive amount. If θ = 0 and vi = v, suppose that xi = 0. Her payoff in this

case is v. Since there exists x′′i ∈ xi(v + τ∆, L) with x′′i > 0, it must be that pi(x
′′
i ) > v,

and so the investor has a profitable deviation, yielding a contradiction.
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2. If x′i ∈ xi(v, 0), then x′i /∈ xi(v, L)∪ xi(v, 0)∪ xi(v + τ∆, L). To see this, suppose instead

that there is an x′i ∈ xi(v, 0) and also in xi(v, L) ∪ xi(v, 0) ∪ xi(v + τ∆, L). Then, from

point 1 it must be that x′i > 0. Furthermore, pi(x
′
i) < v. Thus, type-(v, 0) can deviate

to x′′i = 0 and receive a payoff of v. This yields a contradiction.

3. There is x > 0 such that xi(v, 0) = xi(v, L) = {x}. Suppose instead that there exist

x′i > x′′i both in xi(v, θ). Then, it must be that

x′ipi(x
′
i) + (1− x′i)v = x′′i pi(x

′′
i ) + (1− x′′i )v ⇔

x′ipi(x
′
i)− x′′i pi(x′′i ) = (x′i − x′′i )v.

Note that both pi(x
′
i) > v and pi(x

′′
i ) > v, otherwise there would be a profitable deviation

for type-v to 0 < xi ∈ xi(v, L) where pi(xi) > v. Therefore, both x′i and x′′i must be

played by one of the types with vi ∈ {v, v + ∆τ}. This implies either that one of the

types is mixing between the two strategies, or that one is playing x′i and another x′′i . The

first case requires either

x′ipi(x
′
i)− x′′i pi(x′′i ) = (x′i − x′′i )(v + ∆τ)

or

x′ipi(x
′
i)− x′′i pi(x′′i ) = (x′i − x′′i )v.

However, this contradicts x′ipi(x
′
i) − x′′i pi(x′′i ) = (x′i − x′′i )v. Thus, it requires one of the

types to prefer x′i to x′′i , implying either

x′ipi(x
′
i)− x′′i pi(x′′i ) ≥ (x′i − x′′i )(v + ∆τ)

or

x′ipi(x
′
i)− x′′i pi(x′′i ) ≥ (x′i − x′′i )v.

However, neither of these can hold when x′ipi(x
′
i) − x′′i pi(x

′′
i ) = (x′i − x′′i )v, yielding a

contradiction. Thus, xi(v, θ) must be a singleton.

To show xi(v, 0) = xi(v, L), it suffices to show that x′i ∈ xi(v, 0) implies either that

x′pi(x
′) ≥ L/n or that x′pi(x

′) is the highest revenue that can be obtained in equilib-
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rium. If true this would also imply x > 0. Suppose not. From point 2, x′i /∈ xi(v, 0).

Furthermore, it cannot be that pi(x
′
i) = v, otherwise there would be a profitable deviation.

Thus, it must be that x′i ∈ xi(v+ ∆τ, 0). However, then it must be that pi(x
′
i) < v+ ∆τ ,

which implies that type-(v + ∆τ, 0) has a profitable deviation to xi = 0. This yields a

contradiction.

4. xi(v + ∆τ, L) = {x}. Suppose instead there is x′i ∈ xi(v + ∆τ, L) such that x′i 6= x.

Since x′i 6= x, based on point 3 we have pi(x
′
i) ≥ v + ∆τ . Moreover, note that either

x′ipi(x
′
i) ≥ L/n or x′i generates the highest revenue that can be obtained in equilibrium.

There are two cases:

(a) Suppose pi(x) < pi(x
′
i). If x′i ≥ x then type-(v, 0) has a profitable deviation to

x′i, since she can sell more shares for a higher price. If x′i < x then if type-(v, L)

plays x with positive probability, she has a profitable deviation to x′i (which satisfies

her liquidity needs). If instead type-(v, L) plays x w.p. zero, then pi(x) = v, and

type-(v, 0) has a profitable deviation to x′i, a contradiction.

(b) Suppose pi(x) ≥ pi(x
′
i). Then, type-(v, L) must play x with positive probability. By

revealed preference, this means that

xpi(x)− x′ipi(x′i) ≥ (x− x′i) v.

Since type v also weakly prefers x over x′i,

xpi(x)− x′ipi(x′i) ≥ (x− x′i) v.

However, type v + ∆τ weakly prefer x′i over x,

xpi(x)− x′ipi(x′i) ≤ (x− x′i) (v + ∆τ) .

The combination of the three conditions implies x− x′i = 0, a contradiction.

5. pi(x) < v + τ∆. Based on points 1-4 and the application of Bayes’ rule,

pi(x) ≤ max
γ∈[0,1]

{
v + ∆

(1− β) (1− α∗) γτ + βτ

(1− β) [α∗(1− τ) + (1− α∗) γ] + β

}
.
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Indeed, at best, type-(v, L) chooses x w.p. one, and type-(v + ∆τ, 0) chooses x w.p. γ.

Note that since τ ∈ (0, 1) and α∗ ∈ (0, 1), for every γ ∈ [0, 1] the RHS is strictly smaller

than v + ∆τ .

6. xi(v, L) = {x}. Suppose instead that there is x′i ∈ xi(v, L) such that x′i 6= x. Based on

points 3 and 5, it must be that pi(x
′
i) > v+ ∆τ > pi(x). Therefore, type-(v+ ∆τ, L) has

a profitable deviation to x′i since it leads to a trading profit and also satisfies her liquidity

needs, a contradiction.

7. x /∈ xi(v + ∆τ, 0). Suppose instead that x ∈ xi(v + ∆τ, 0) w.p. γ > 0. Based on point 5,

pi(x) < v+ ∆τ . Therefore, type-(v+ ∆τ, 0) has strict incentives to choose xi = 0 instead

of x, a contradiction.

8. xi(v, 0) = {0}. Suppose instead there exists x′i ∈ xi(v, 0) with x′i > 0. Then, pi(x
′
i) = v.

Therefore, it must be x′i 6∈ xi(v + ∆τ, 0). Based on points 1-7, if x′′i ∈ xi(v + ∆τ, 0)

then either x′′i = 0 or pi(x
′′
i ) = v + ∆τ . This implies that the equilibrium payoff of

type-(v + ∆τ, 0) is v + ∆τ . However, in this case, type-(v + ∆τ, 0) has strict incentives

to play x′i and receive a payoff strictly higher than v + ∆τ , a contradiction.

These points show that in any equilibrium, we have xi(v, L) ∪ xi(v + ∆τ, L) ∪ xi(v, L) ∪
xi(v, 0) = {x}, xi(v, 0) = {0}, and x /∈ xi(v+∆τ, 0). Now, given this, without loss of generality

(for investigation incentives) we consider the case where xi(v + ∆τ, 0) = {0}. Note that the

selling strategies in the Proposition satisfy the conditions of the previous part of the proof.

Given these selling strategies, the prices satisfy Bayes’ rule. The Grossman and Perry (1986)

refinement leads to x = n×min
{

L/n
p∗i (x)

, 1
}

.

The investor’s expected payoff from investigating is

τ [(1− β)nv + β(xp∗i (x) + (n− x)v)] + (1− τ)[xp∗i (x) + (n− x)v]− ci,

If instead she does not investigate, her expected payoff is

(1− β)n(v + ∆τ) + β[xp∗i (x) + (n− x)(v + ∆τ)].
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Thus, the investor investigates if and only if

ci ≤ (1− β) (1− τ)x (p∗i (x)− v) .

Therefore, in equilibrium there exists c∗ such that the investor investigates if and only ci ≤ c∗.

This implies α∗ = F (c∗), and therefore c∗ must solve

c∗ = β (1− β) τ(1−τ)n∆ min

{
L/n

v [F (c∗)(1− β)(1− τ) + β] + ∆βτ
,

1

F (c∗)(1− β)(1− τ) + β

}
Note that the RHS is decreasing in c∗, and so if a solution exists, it is unique. Furthermore,

at c∗ = 0, the RHS is greater and as c∗ →∞, the LHS is greater. Thus, there exists a unique

c∗ satisfying this equation.

The intuition behind the investigation threshold, (61), is as follows. Up to a point, the

greater the investor’s number of securities n, the greater the incentives to investigate. This is

because, when her stake n is small, a liquidity shock forces her to sell it in its entirety. Thus,

if she learns that the firm is bad, she also sells her entire stake, because doing so disguises

her sale as being motivated by a shock. A higher n allows her to sell more securities if she

learns that the firm is bad, increasing her trading profits, and thus her incentives to gather

information. However, after we cross the point at which

L/n

v [F (c∗)(1− β)(1− τ) + β] + ∆βτ
=

1

F (c∗)(1− β)(1− τ) + β
,

the investigation threshold is now defined by

c∗ =
β (1− β) τ(1− τ)∆L

v [F (c∗)(1− β)(1− τ) + β] + ∆βτ

and is independent of n. The investor’s stake n is now sufficiently large, compared to the

liquidity shock L, that she is no longer forced to sell it in its entirety. As a result, she can

only partially sell her stake upon learning that the firm is bad, otherwise she is fully revealed.

Further increases in stake size do not increase her investigation incentives, since they do not

lead to a higher sale volume upon acquiring negative information. This result is exactly the

same as the separate ownership model of Edmans (2009). Thus, the conventional wisdom that

information acquisition incentives are increasing in stake size is only true up to a point.
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Next, we consider the model under common ownership.

Proposition 14 (Information Acquisition, Common Ownership): Consider the model with

information acquisition and common ownership where L/n ≤ F (βτ(1 − τ)∆)(1 − τ)v. There

is an equilibrium in which the investor investigates if and only if ci ≤ c∗co,info = F−1
(

L/n
(1−τ)v

)
.

The equilibrium can be implemented with selling strategies

xi (vi, θ) =

0 if vi ∈ {v + τ∆, v}

1 if vi = v,

and prices that satisfy

p∗i (xi) =

v + ∆ τ
F (c∗co,info)τ+1−F (c∗co,info)

if xi = 0

v if xi > 0.

Proof of Proposition 14. Similar to separate ownership, in equilibrium there is c∗ such

that the investor investigates if and only if ci ≤ c∗. Suppose L/n ≤ F (c∗) (1 − τ)v (which

implies L/n < (1− τ)v), then the investor can satisfy the shock from selling only bad firms. In

this case, the proposed selling strategies are consistent with such an equilibrium given prices,

and prices are consistent with the proposed strategies by Bayes’ rule.

Suppose the market makers believe that L/n ≤ F (c∗) (1− τ)v but the investor chooses c,

where we allow for c 6= c∗.

1. If L/n ≤ F (c) (1− τ)v, she chooses the same strategies as under the equilibrium c∗, i.e.

sells bad firms and retains all others.

2. If L/n > F (c) (1 − τ)v and θ = 0, the investor strictly prefers to retain all firms not

identified as bad, and is indifferent between selling and retaining bad firms. If she suffers

a shock, she sells all bad firms, min
{
L/n−F (c)(1−τ)v

(1−F (c))v
, 1
}

from all uninvestigated firms, and

min
{

max
{
L/n−(1−F (c)τ)v

F (c)τv
, 0
}
, 1
}

from all good firms. Since L/n < (1 − τ)v ⇒ L/n <

(1− F (c) τ)v, the last term is zero, i.e. the investor never has to sell good firms.

Let Π(c∗, c) denote the profits from choosing c when the market maker believes the investor
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follows threshold c∗. Then,

1

n
Π(c∗, c) = −F (c)E[ci|ci < c] + (1− β) (v + ∆τ)

+β


F (c) (1− τ) v + F (c)τv+

(1− F (c))

 min
{
L/n−F (c)(1−τ)v

(1−F (c))v
, 1
}
v

+
(

1−min
{
L/n−F (c)(1−τ)v

(1−F (c))v
, 1
})

(v + ∆τ)


 .

Thus,

∂Π(c∗, c)

∂c

1

n

1

f(c)
=

−c+ β(1− τ)τ∆ if c ≤ F−1
(

L/n
v(1−τ)

)
−c otherwise

and the first-order condition with respect to c implies

c∗ =

β(1− τ)τ∆ if v(1− τ)F (β(1− τ)τ∆) < L/n

F−1
(

L/n
v(1−τ)

)
otherwise.

However, if v(1− τ)F (β(1− τ)τ∆) < L/n, the equilibrium strategy of selling only bad firms

upon a shock would not raise sufficient revenue, yielding a contradiction. Thus, for equilibria

in which the investor only sells bad firms, it must be that L/n ≤ F (β(1− τ)τ∆)(1− τ)v and

c∗ = F−1
(

L/n
(1−τ)v

)
.

Intuitively, when the investor investigates a certain measure of firms, by the law of large

numbers she knows how many will be bad. Thus, she chooses to investigate just enough firms

to reveal just enough bad firms that she can exactly satisfy any liquidity shock by selling them

all. She has no incentive to investigate fewer firms, since if she suffers a liquidity shock, she

will have to sell some uninvestigated (and thus some good) firms. She has no incentive to

investigate more firms. Doing so will uncover additional bad firms, but she does not need to

sell these firms as she is already satisfying her liquidity shock, and earns no trading profit by

voluntarily selling these firms since selling leads to a price of v.

This intuition explains the investor’s investigation threshold, c∗co,info = F−1
(

L/n
(1−τ)v

)
, which

is increasing in the per-security liquidity shock L/n. When the liquidity shock is large relative

to the number of firms, the investor needs to sell a larger stake in each firm to satisfy a shock.

This increases the losses from selling uninvestigated firms that are actually good, and thus
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the incentives to investigate firm value. Interestingly, this contrasts the threshold in the voice

model, which is decreasing in L/n.

While Proposition 14 gives conditions under which there exists an equilibrium under which

investigation is higher under common ownership, Proposition 15 shows, in any equilibrium

under common ownership, investigation is higher than in any equilibrium under separate own-

ership, if β is sufficiently large and L is sufficiently small.

Proposition 15 (Information Acquisition, Comparison of Ownership Structures): There is

β < 1 such that if L/n ≤ F (βτ(1− τ)∆)(1− τ)v and β > β then the investor acquires strictly

more information in any equilibrium under common ownership than in any equilibrium under

separate ownership.

Proof of Proposition 15. Based on Proposition 14, if L/n ≤ F (βτ(1− τ)∆)(1− τ)v then

there always exists an equilibrium under common ownership in which the investor can satisfy

her liquidity needs by selling only bad firms. In this equilibrium, the cutoff is F−1
(

L/n
(1−τ)v

)
> 0.

Based on Proposition 13, in any equilibrium under separate ownership, the cutoff is unique

and given by c∗so,info (β) , where limβ→1 c
∗
so,info (β) = 0. Note that F (βτ(1 − τ)∆)(1 − τ)v is

increasing in β. Therefore, there exists β < 1 such that if L/n ≤ F (βτ(1− τ)∆)(1− τ)v and

β > β then F−1
(

L/n
(1−τ)v

)
> c∗so,info (β), as required.

Next, suppose β > β and L/n ≤ F (βτ(1 − τ)∆)(1 − τ)v, and consider a candidate equi-

librium under common ownership in which the investor must sell some uninvestigated firms to

satisfy her shock, i.e.

F (c∗) (1− τ) v < L/n.

Note that

L/n ≤ F (βτ(1− τ)∆)(1− τ)v < (1− τ) v = min
c≥0
{(1− τF (c)) v} .

Therefore, if L/n ≤ F (βτ(1 − τ)∆)(1 − τ)v then good firms are never sold in equilibrium.

Hereafter, we maintain this assumption, which implies that in equilibrium there are only two

types of firms the investor potentially sells: bad and uninvestigated firms. Let n̂ (c∗) denote

the mass of firms not identified as a good, a fraction τ̂ (c∗) of which are valued at v̂, and a
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fraction 1− τ̂ (c∗) of which are valued at v, where

n̂ (c∗) = n (1− τF (c∗))

τ̂ (c∗) =
1− F (c∗)

F (c∗) (1− τ) + 1− F (c∗)
=

1− F (c∗)

1− τF (c∗)

v̂ = v + ∆̂

∆̂ = τ∆.

Note that

F (c∗) (1− τ) v < L/n < (1− τF (c∗)) v ⇔

(1− τ̂ (c∗)) v < L/n̂ (c∗) < v

We therefore apply parts (ii) and (iii) of Proposition 2, where τ is replaced by τ̂ (c∗), v by v̂, ∆ by

∆̂, and n by n̂ (c∗). The only exception is pi (0), which is different (since firms that are identified

as good are fully retained) but has no effect on the decision to acquire information. Therefore,

there are only two possible equilibria, type (ii) and type (iii), as described in Proposition 2.

We proceed by showing that there are ε > 0 and β̂ < 1 such that if β > β̂ and an equilibrium

of type (ii) or type (iii) exists, then in this equilibrium c∗ (β) > ε. Since limβ→1 c
∗
so,info (β) = 0,

if this claim holds then the proof is completed.

Consider an equilibrium of type σ ∈ {ii, iii}, and suppose by the way of contradiction

that the statement above fails. Then, there exists a sequence of {βk} with limk→∞ βk =

1 and corresponding equilibria cutoffs {c∗σ (βk)} such that limk→∞ c
∗
σ (βk) = 0. Therefore,

limk→∞ τ̂ (c∗σ (βk)) = 1 and limk→∞ n̂ (c∗σ (βk)) = n. Moreover, let

p∗iii (β) = pso (τ̂ (c∗ (β)))

x∗iii (β) = xso(τ̂(c∗(β)))
n̂(c∗(β))

p∗ii (β) = pco (τ̂ (c∗ (β)))

x∗ii (β) = xco (τ̂ (c∗ (β)))
,

and notice that for σ ∈ {ii, iii}

lim
k→∞

p∗σ (βk) = v + τ∆

lim
k→∞

x∗σ (βk) =
L/n

v + τ∆
.
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Also note that since we require L/n < v, the investor always meets her liquidity needs in

equilibrium. Fix β, and to ease the notation, we hereafter omit the argument β from the

endogenous variables. To further simplify the notation, we also omit the subscripts σ whenever

there is no risk of confusion.

Consider a deviation of the investor to a threshold c > c∗. Moreover, suppose that under

this deviation the investor fully retains nτF (c) firms, fully sells nh (c) firms, and partly sells

n (1− τF (c)− h (c)) firms, where h (c) is determined by

(1− τF (c)− h)x∗p∗ + hv = L/n⇔

h (c) =
L/n− (1− τF (c))x∗p∗

v − x∗p∗
.

We argue h (c) ∈ (0, F (c) (1− τ)). There are two cases:

1. Consider an equilibrium of type (ii). Recall L/n < v (1− τ) and that in this type of

equilibrium

x∗p∗ =
L/n− v (1− τ)F (c∗)

1− F (c∗)

Therefore,

x∗p∗ < L/n < (1− τ) v < v.

Since (1− τF (c))x∗p∗ < L/n, we have h (c) > 0. Also recall that in this type of

equilibrium

L/n = (1− F (c∗))x∗p∗ + F (c∗) (1− τ) v.

Therefore,

F (c∗) < F (c)⇒

L/n < (1− F (c))x∗p∗ + F (c) (1− τ) v ⇒

h (c) < F (c) (1− τ) ,

as required.

2. Consider an equilibrium of type (iii). Recall L/n < v (1− τ) and that in this type of

equilibrium, x∗p∗ = L/n. Since (1− τF (c))x∗p∗ < L/n, we have h (c) > 0. Since
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x∗p∗ = L/n < v (1− τ) we have

L/n = x∗p∗ < (1− F (c))x∗p∗ + F (c) (1− τ) v,

and therefore,

h (c) < F (c) (1− τ) ,

as required.

Since h (c) < F (c) (1− τ), the investor fully retains all F (c) τ good firms, partly sells all

1−F (c) uninvestigated firms, fully sells nh (c) bad firms, and the rest of n (F (c) (1− τ)− h (c))

bad firms are partly sold. The profit from this deviation is

Π (c, β) = F (c) τ (v + ∆) + h (c) v + (F (c) (1− τ)− h (c)) [x∗p∗ + (1− x∗) v]

+ (1− F (c)) [x∗p∗ + (1− x∗) (v + τ∆)]− F (c)E [ci|ci < c]

where the argument β emphasizes that x∗ and p∗ (and also indirectly h (c)) depend on β.

Therefore,

∂Π (c, β)

∂c

1

f (c)
= τv +

τx∗p∗

v − x∗p∗
v +

(
(1− τ)− τx∗p∗

v − x∗p∗

)
[x∗p∗ + (1− x∗) v]

− [x∗p∗ + (1− x∗) (v + τ∆)]− c

= τ (v + ∆)− (1− x∗) τ∆− vτ

v − x∗p∗
(1− x∗) v − c

= τx∗
(

∆− v p∗ − v
v − x∗p∗

)
− c.

Recall that limk→∞ p
∗(βk) = v + τ∆ and limk→∞ x

∗ (βk) = L/n
v+τ∆

. Therefore,

lim
k→∞

∂Π (c, βk)

∂c

1

f (c)
= τ

L/n

v + τ∆

(
∆− v

(
τ∆

v − L/n

))
− c

= ∆τ
L/n

v + τ∆

v (1− τ)− L/n
v − L/n

− c.

Since L/n < v (1− τ),

lim
k→∞

∂Π (c, βk)

∂c

1

f (c)
|c=0 > 0.
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Since limk→∞ c
∗ (βk) = 0, for k sufficiently large (that is β sufficiently close to one), the

deviation above is a profitable, which creates a contradiction as required.

Proposition 16 shows that price informativeness can be higher under any common ownership

equilibrium than under any separate ownership equilibrium, even when information acquisition

is endogenous. Moreover, even if information acquisition is lower under common ownership,

price informativeness may be higher due to the key force of the core model – common ownership

increases adverse selection.

Proposition 16 (Price informativeness Under Information Acquisition):

(i) There is β∗ < 1 such that if β > β∗ and L/n ≤ F (β∗τ(1 − τ)∆)(1 − τ)v then for any

equilibrium under common ownership and any equilibrium under separate ownership

Pco,info (v, τ) > Pso,info (v, τ) and Pco,info (v, τ) ≤ Pso,info (v, τ) . (62)

Moreover, there is an equilibrium under common ownership such that the above inequal-

ities are strict with respect to any equilibrium under separate ownership.

(ii) There is β∗∗ < 1 and n∗∗ < ∞ such that if β > β∗∗, n > n∗∗, and L/n ≤ F (β∗τ(1 −
τ)∆)(1 − τ)v then there is an equilibrium under common ownership and an equilibrium

under separate ownership such that the investor acquires strictly more information under

separate ownership yet the inequalities in (62) hold strictly.

Proof of Proposition 16. In the proof of Proposition 13 there is an implicit assumption

that xi(v+∆τ, 0) = {0}.30 To maximize price informativeness under separate ownership (thus,

to bias the proof against common ownership having larger price informativeness), we suppose

xi(v+ ∆τ, 0) = {ε}, where 0 ≤ ε < x is arbitrarily small such that no deviation for other types

30This assumption has no effect on the analysis of c∗so,info, because regardless of whether she retains unin-
vestigated firms, she obtains their expected value, v + ∆τ.
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is profitable and

xi (vi, θ) =


0 if vi = v and θ = 0

ε if vi = v + τ∆ and θ = 0

xso ≡ n×min
{
L/n
pso
, 1
}

otherwise,

p∗so,info (xi) =



v if xi = 0

v + τ∆ if xi ∈ (0, ε]

pso = v + ∆ βτ
F (c∗so,info)(1−β)(1−τ)+β

if xi ∈ (ε, xso]

v if xi > xso.

Under this formulation,

Pso,info (vi, τ) =

βpso + (1− β)
[
F (c∗so,info)pso +

(
1− F (c∗so,info)

)
(v + τ∆)

]
if vi = v

βpso + (1− β)
(
F (c∗so,info)v +

(
1− F (c∗so,info)

)
(v + τ∆)

)
if vi = v.

Consider common ownership. There are three cases to consider, one for each type of

equilibrium that can emerge under common ownership when L/n ≤ F (βτ(1− τ)∆)(1− τ)v.

1. Consider an equilibrium in which the investor can satisfy her liquidity needs by selling

only bad firms. In the proof of Proposition 14 there is an implicit assumption that bad

firms are always fully sold, even if the investor does not suffer a shock and is indifferent

between selling and not selling.31 To minimize price informativeness under common own-

ership (thus, to bias the proof against common ownership having larger price informative-

ness), we suppose that the investor fully retains bad firms if there is no shock. Under this

assumption, xi (v, 0) = 0, and similar to Proposition 14, if L/n ≤ F (βτ(1− τ)∆)(1− τ)v

then prices satisfy

p∗co,info (xi) =

v + ∆ τ
F (c∗co,info)(τ+(1−τ)(1−β))+1−F (c∗co,info)

if xi = 0

v if xi > 0.

31This assumption has no effect on the analysis of c∗so,info, because regardless of whether she fully sells bad
firms, she obtains their fundamental value, v.
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Therefore,

Pco,info (vi, τ) =

F (c∗co,info)
(
βv + (1− β) p∗co,info (0)

)
+
(
1− F (c∗co,info)

)
p∗co,info (0) if vi = v

p∗co,info (0) if vi = v.

If β = 1 then

Pco,info (v, τ) > Pso,info (v, τ)⇔

p∗co,info (0) > pso ⇔

v + ∆
τ

F (c∗co,info)τ + 1− F (c∗co,info)
> v + ∆τ

and

Pco,info (v, τ) < Pso,info (v, τ)⇔

F (c∗co,info)v +
(
1− F (c∗co,info)

)
p∗co,info (0) < pso ⇔

v + ∆τ
1− F (c∗co,info)

F (c∗co,info)τ + 1− F (c∗co,info)
< v + ∆τ

which always holds.

2. Consider a type-(ii) equilibrium, if it exists. Recall that in this equilibrium

x∗co (vi, θ) =



0 if vi = v, or vi = v + τ∆ and θ = 0

xco =
v+

L/n̂(c∗ii)−v

τ̂(c∗ii)
pco

=

L/n−v(1−τ)F(c∗ii)
1−F(c∗ii)

1
pco

< 1

if vi = v and θ = 0, or vi = v + τ∆ and θ = L

1 if vi = v and θ = L,

(63)
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and prices of firm i are:

p∗co,info (xi) =


v + ∆

F(c∗ii)τ+(1−β)(1−F(c∗ii))τ
F(c∗ii)τ+(1−β)(1−F(c∗ii))

if xi = 0

pco = v + ∆
β(1−F(c∗ii))τ

β(1−F(c∗ii))+(1−β)F(c∗ii)(1−τ)
if xi ∈ (0, xco],

v if xi > xco.

(64)

Therefore,

Pco,info (vi, τ) =



β [(1− F (c∗ii)) pco + F (c∗ii) v] +

(1− β)
[
(1− F (c∗ii)) p

∗
co,info (0) + F (c∗ii) pco

] if vi = v

β
[
(1− F (c∗ii)) pco + F (c∗ii) p

∗
co,info (0)

]
+ (1− β) p∗co,info (0)

if vi = v.

If β = 1 then

Pco,info (v, τ) > Pso,info (v, τ)⇔

(1− F (c∗ii)) pco + F (c∗ii) p
∗
co,info (0) > pso ⇔

(1− F (c∗ii)) (v + ∆τ) + F (c∗ii) (v + ∆) > v + ∆τ

and

Pco,info (v, τ) < Pso,info (v, τ)⇔

(1− F (c∗ii)) pco + F (c∗ii) v < pso ⇔

(1− F (c∗ii)) (v + ∆τ) + F (c∗ii) v < v + ∆τ

which always holds.

3. Consider a type-(iii) equilibrium, if it exists. Focusing on the selling strategy that mini-

mizes price informativeness, this equilibrium involves

x∗ (vi, θ) =

0 if vi = v, or vi = v + τ∆ and θ = 0

xso =
L/n̂(c∗iii)

pco
otherwise,

(65)
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and prices

p∗co,info (xi) =


v + ∆

F (c∗iii)τ+(1−β)(1−F (c∗iii))τ
F (c∗iii)τ+(1−β)(1−F (c∗iii))

if xi = 0

pco = v + ∆ βτ
F (c∗iii)(1−β)(1−τ)+β

if xi ∈ (0, xso],

v if xi > xso (τ) .

(66)

Therefore,

Pco,info (vi, τ) =

βpco + (1− β)
[
F (c∗iii) pco + (1− F (c∗iii)) p

∗
co,info (0)

]
if vi = v

β
[
(1− F (c∗iii)) pco + F (c∗iii) p

∗
co,info (0)

]
+ (1− β) p∗co,info (0) if vi = v.

If β = 1 then

Pco,info (v, τ) > Pso,info (v, τ)⇔

(1− F (c∗ii)) pco + F (c∗ii) p
∗
co,info (0) > pso ⇔

(1− F (c∗ii)) (v + ∆τ) + F (c∗ii) (v + ∆) > v + ∆τ

and

Pco,info (v, τ) = Pso,info (v, τ) = v + τ∆.

This concludes part (i).

To show part (ii), consider the equilibrium under common ownership described in Case 1

in the proof of part (i) of this proposition, but now assume xi (v, 0) = 1, then

p∗co,info (0) = v + ∆
τ

F (c∗co,info)τ + 1− F (c∗co,info)

and

Pco,info (vi, τ) =

F (c∗co,info)v +
(
1− F (c∗co,info)

)
p∗co,info (0) if vi = v

p∗co,info (0) if vi = v.
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Moreover, consider the equilibrium under separate ownership with ε = 0. In this case,

xi (vi, θ) =

0 if vi = v and θ = 0 or, vi = v + τ∆ and θ = 0

xso ≡ n×min
{
L/n
pso
, 1
}

otherwise,

p∗so,info (xi) =


v + ∆ τ

F (c∗so,info)τ+(1−F (c∗so,info))
if xi = 0

pso = v + ∆ βτ
F (c∗so,info)(1−β)(1−τ)+β

if xi ∈ (0, xso]

v if xi > xso.

and

Pso,info (vi, τ) =

βpso + (1− β)
[
F (c∗so,info)pso +

(
1− F (c∗so,info)

)
pso,info (0)

]
if vi = v

βpso + (1− β) pso,info (0) if vi = v.

This implies that if c∗co,info = c∗so,info = c∗ then

Pco,info (v, τ) > Pso,info (v, τ)⇔ p∗co,info (0) > p∗so,info (0)

which always holds, and

Pco,info (v, τ) < Pso,info (v, τ)⇔

F (c∗)v + (1− F (c∗)) p∗co,info (0) < βpso + (1− β) [F (c∗)pso + (1− F (c∗)) pso,info (0)]

F (c∗)v + (1− F (c∗)) p∗co,info (0) < F (c∗)pso + (1− F (c∗)) [(1− β) pso,info (0) + βpso]

β (1− F (c∗)) (pso,info (0)− pso) < F (c∗) (pso − v)

1− F (c∗)

F (c∗)τ + (1− F (c∗))
<

β (1− F (c∗)) + F (c∗)

F (c∗)(1− β)(1− τ) + β

(1− F (c∗)) τ > −F (c∗)τ

which always holds. Thus price informativeness is higher under common ownership, if the

investigation cutoff is the same. Suppose n is sufficiently large and β < 1 is sufficiently close

to one such that L/n ≤ F (βτ(1− τ)∆)(1− τ)v and ε > c∗so,info − F−1
(

L/n
(1−τ)v

)
> 0 (note that

c∗so,info is invariant to n if L/n ≤ F (βτ(1 − τ)∆)(1 − τ)v) for some arbitrarily small ε > 0.

Then, the above equilibrium under common ownership has a strictly lower cutoff but strictly
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higher price informativeness than the above equilibrium under separate ownership.

C.2 Single Market Maker

This section considers the case of a single market maker, who observes the order flows of all

firms when setting prices. For brevity, we consider the small shock case, since this is where

our results are strongest.

Since shocks are i.i.d. under separate ownership, xj contains no information relevant for the

pricing of firm i 6= j. Therefore, the analysis of separate ownership does not change. Below we

show that our main results continue to hold for both voice and exit, i.e. governance is strictly

superior under common ownership than separate ownership when L is small.

Proposition 17 (Single market maker):

(i) Consider the voice model and suppose L/n ≤ v (1− F (∆)). In any equilibrium under

common ownership, per-security monitoring incentives are strictly higher than under sep-

arate ownership.

(ii) Consider the exit model and suppose L/n < v+∆F (R−R+∆ω). There is an equilibrium

under common ownership in which the working threshold is strictly greater than under

separate ownership.

Proof of Proposition 17. Consider part (i). We show that, in any equilibrium under

common ownership, the monitoring threshold is weakly greater than ∆. If true, noting that
c∗so,voice

n
< ∆ completes the proof. We proceed in two steps.

1. We show that there exists an equilibrium with cutoff c∗ = ∆. In this equilibrium, the

investor’s trading strategy is given by:

x∗i (vi, θ) =

1 if vi = v

0 if vi = v
(67)

and prices are given by

p∗i (x) =

v if xi = 0

v if xi > 0.
(68)
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Consider first the selling decision when L/n ≤ v(1 − F (∆)). Given a measure τ of

monitored firms, and given the pricing function, the investor is willing to sell all bad

firms. Upon a shock, she will sell the 1 − τ bad firms, and if L/n > v(1 − τ), she will

also sell L/n−v(1−τ)
v

shares from good firms. Note that if τ = F (∆), this implies that in

equilibrium she will only sell shirking firms since L/n ≤ v(1−F (∆)). Thus, if the market

maker expects the threshold to be c∗, the investor’s payoff from choosing threshold c is

Π(c∗, c) = v + ∆F (c)×

1 if F (c) ≤ 1− L/n
v

1− β L/n−v(1−F (c))
v

if F (c) > 1− L/n
v

− F (c)E[ci|ci < c].

The first-order condition with respect to c implies c∗ = ∆ if F (∆) ≤ 1 − L/n
v

, which

holds by assumption. Thus, in such an equilibrium, the optimal cutoff rule is ∆, and the

investor sells all shirking firms and keeps all working firms. Bayes’ rule shows that the

pricing function satisfies the equilibrium condition.

2. Suppose on the contrary that there exists an equilibrium with threshold c∗ < ∆. We first

argue that the investor’s expected payoff in this equilibrium is

Π∗ = v + ∆F (c∗)− F (c∗)E[ci|ci < c∗].

Since the market maker prices the securities fairly, the investor receives the fair value

of her portfolio unconditional on her shock. (Her trading profits if she suffers no shock

equal her losses if she suffers a shock). Second, we show that the investor has a profitable

deviation to c∗ = ∆. Indeed, since L/n ≤ v (1− F (∆)), the investor never has to sell

any of the nF (∆) good firms, and so receives v. Moreover, she can receive at least v for

every bad firm, and perhaps more. Therefore, the total profit from this deviation is at

least v + ∆F (∆)− F (∆)E[ci|ci < ∆]. Last, note that the function

v + ∆F (c)− F (c)E[ci|ci < c]

obtains its unique maximum at c = ∆. Therefore, this is an optimal deviation. This

complete part (i).

Consider part (ii). We show that there is an equilibrium under common ownership in which
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the monitoring cutoff is R − R + ω∆. If true, noting that c∗so,voice < R − R + ω∆ completes

the proof. Consider the following equilibrium. The monitoring cutoff is c∗ = R−R+ω∆, and

prices and trading strategies are as in the first stage of the proof of part (i). To see that this

is an equilibrium, consider manager i’s effort decision. Note that, given the proposed trading

strategies and prices, a shirking (working) firm always receives a price of v (v). Thus, the

manager will work if and only if

R− c̃i + ωv ≤ R + ωv ⇔ R−R + ω∆ ≤ c̃i,

as required. Next, consider the pricing function. Given the trading strategies and the expected

working cutoff, the prices follow Bayes’ rule. Finally, consider the investor’s trading decision.

Since L/n < v + ∆F (R−R+ ∆ω), the investor can satisfy her shock by selling only shirking

firms. Since xi > 0 ⇒ pi (xi) = v, she has no incentives to sell any working firms. Therefore,

the trading strategy is incentive-compatible.

C.3 Discontinuing Relationships

In this section, we apply our model to situations in which the investor decides whether to

(partly) discontinue a relationship with the firm. Examples include a bank terminating a

lending relationship with a borrower, or a venture capital investor choosing not to invest in a

future financing round. We thus distinguish between two concepts. The price pi (xi) reflects

the impact of (dis)continuation on firm i’s reputation. In the core model, this equalled the

investor’s payoff upon selling. Here, since we consider a discontinuation rather than a sale

decision, the investor receives her outside option, r < v, upon sale.32 Importantly, unlike in

the core model, this reservation payoff is fixed and independent of the impact of sale on the

firm’s reputation. However, we nevertheless show that common ownership can still improve

governance. Note that this extension can be applied to stakeholders other than investors, e.g.

a supplier or customer’s decision to terminate its relationship with a firm, in which case it also

receives a fixed reservation payoff.

We consider two cases based on the magnitude of r. In the first case, r ∈ (v, v), and so

32If r ≥ v, the analysis is trivial since the investor is weakly better off exiting all firms, regardless of their
value and her liquidity needs. This behavior will result in identical governance under separate and common
ownership, and it particular, it will exhibit the lowest monitoring and working thresholds.
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the investor wishes to terminate her relationship with bad firms, but retain it in good firms.

In the second case, r < v, and so the investor exits only if she needs liquidity. As we show

below, our main results on the superiority of common ownership continue to hold, except that

if r ∈ (v, v), then governance through exit is independent of the ownership structure.

Proposition 18 (Discontinuing relationships, high reservation payoff): Suppose r ∈ (v, v).

Then:

(i) Consider the voice model. The investor’s per-security monitoring incentives are strictly

higher under common ownership than under separate ownership if and only if L/n <

r (1− F ((1− β)(v − r))).

(ii) Consider the exit model. The working threshold in any equilibrium is independent of the

ownership structure.

Proof of Proposition 18. We start by deriving trading strategies given τ , and then

endogenize τ under the voice and exit models. Consider separate ownership. Since the payoff

to exit is r ∈ (v, v) per unit, the investor always fully exits bad firms and exits good firms just

enough to satisfy her liquidity needs. Therefore,

x∗so (vi, θ) =


0 if vi = v and θ = 0

xso = nmin
{

1, L/n
r

}
if vi = v and θ = L

n if vi = v.

Similarly, in any equilibrium under common ownership,

x∗co (vi, θ) =


0 if vi = v and θ = 0

xco(τ) = min
{

1,max
{

0, L/n−r(1−τ)
τr

}}
if vi = v and θ = L

1 if vi = v.

Next, we endogenize τ using the voice model. Consider separate ownership. Given the

trading strategy above, the investor’s payoff from monitoring is

(1− β)v + β

(
xso
n
r +

(
1− xso

n

)
v

)
− c̃i
n
.
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Her payoff from not monitoring is r. Thus, she monitors if and only if

c̃i
n
≤
(

1− βxso
n

)
(v − r).

Therefore, the equilibrium monitoring threshold under separate ownership is unique and given

by:
c∗∗∗so,voice (n)

n
=

(
1− βxso

n

)
(v − r).

Next, we argue that the equilibrium monitoring threshold under common ownership is unique

and given by:

c∗∗∗co,voice =


v − r if L/n

r
≤ 1− F (v − r)

F−1(1− L/n
r

) if 1− F (v − r) ≤ L/n
r
< 1− F ((1− β)(v − r))

(1− β)(v − r) if 1− F ((1− β)(v − r)) ≤ L/n
r
.

To see why, note that based on the trading strategy, the investor’s payoff from choosing a cutoff

rule c∗ is given by

Π(c∗) = F (c∗)[v + βxco(F (c∗)) (r − v)] + (1− F (c∗))r − F (c∗)E[ci|ci < c∗].

Here, her payoff is independent of prices. Her first-order condition is

dΠ(c∗)

dc∗
1

f(c∗)
=

v − r − c∗ if c∗ ≤ F−1(1− L/n
r

)

(1− β)(v − r)− c∗ if c∗ > F−1(1− L/n
r

).
(69)

There are three cases to consider:

1. If v − r ≤ F−1(1− L/n
r

), the unique solution is c∗ = v − r.

2. If (1− β)(v − r) < F−1(1− L/n
r

) < v − r, the unique solution is c∗ = F−1(1− L/n
r

).

3. If F−1(1− L/n
r

) ≤ (1− β)(v− r), the unique solution is c∗ = (1− β)(v− r). This implies

the cutoff rule is c∗∗∗co,voice.

Next, we prove that c∗∗∗so,voice (1) < c∗∗∗co,voice if and only if L/n < r (1− F ((1− β)(v − r))).
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Note that the investor’s per-security monitoring incentives under separate ownership are given

by
(

1− βmin
{

1, L/n
r

})
(v − r). There are four cases to consider:

1. If L/n
r
≤ 1− F (v − r) then v − r >

(
1− βmin

{
1, L/n

r

})
(v − r).

2. If 1− F (v − r) ≤ L/n
r
< 1− F ((1− β)(v − r)), then

F−1(1− L/n

r
) >

(
1− βL/n

r

)
(v − r)⇔ L/n < r

(
1− F

[(
1− βL/n

r

)
(v − r)

])
and note that

r

(
1− F

[(
1− βL/n

r

)
(v − r)

])
< r (1− F ((1− β)(v − r)))⇔ L/n

r
< 1.

Therefore, the investor’s per-security monitoring incentives are strictly higher under com-

mon ownership.

3. If 1 − F ((1− β)(v − r)) ≤ L/n
r
< 1 then c∗∗∗co,voice = (1 − β)(v − r) <

(
1− β L/n

r

)
(v − r)

and the investor’s per-security monitoring incentives are strictly higher under separate

ownership.

4. If 1 ≤ L/n
r

then (1 − β)(v − r) =
(

1− βmin
{

1, L/n
r

})
(v − r), and the investor’s per-

security monitoring incentives are independent of ownership structure.

We finally endogenize τ using the exit model. We first derive the prices, i.e. the firm’s

reputation post-exit.33 Under separate ownership, prices follow directly from the application

of Bayes’ rule to x∗so (vi, θ). In particular, if L/n < r, prices are

p∗i (xi) =

v if xi ∈ {0, xso}

v if xi = n,

33Since off-equilibrium prices are irrelevant for the investor’s exit decision, we do not specify them to ease
the exposition.
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and when L/n ≥ r, they are

p∗i (xi) =

v if xi = 0

v + ∆ βτ
βτ+1−τ if xi = n.

Under common ownership, prices follow directly from the application of Bayes’ rule to x∗co (vi, θ).

If L/n < r, prices are

p∗i (xi) =

v if xi {0, xco(τ)}

v if xi = 1,

and when L/n ≥ r, they are

p∗i (xi) =

v if xi = 0,

v + ∆ βτ
βτ+1−τ if xi = 1.

Next, we argue that the working threshold in any exit equilibrium, under any ownership struc-

ture, is given by:

c∗∗∗exit =

R−R + ω∆ if L/n < r

c∗∗∗ii,exit s.t. c∗ = ζexit,fixed(F (c∗)) if L/n ≥ r.

where

ζexit,fixed (τ) = R−R + ∆ω

(
1− 1

τ + 1−τ
β

)
.

To see why, suppose L/n < r. Under either ownership structure, the price is v if the manager

shirks and v if he works. Thus, the manager’s action is perfectly revealed, and so the optimal

cutoff rule satisfies R−R+ ω∆ under any ownership structure. Suppose L/n ≥ r. Under any

ownership structure, the price is v if θ = 0 and vi = v and p∗i (1) = v + ∆ βτ
βτ+1−τ otherwise.

Therefore, the manager works if and only if

R− c̃i + ω(βp∗i (1) + (1− β)v) ≥ R + ωp∗i (1)⇔

R−R + ω(1− β)(v − p∗i (1)) ≥ c̃i ⇔

ζexit,fixed(τ) ≥ c̃i.
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Thus, an optimal cutoff rule must satisfy c∗ = ζexit,fixed(F (c∗)). Noting that ζexit,fixed(τ) is

a decreasing function, and hence a solution to c∗ = ζexit,fixed(F (c∗)) is unique, completes the

proof.

The intuition is as follows. Since the investor’s payoff upon exit is independent of how

much she exits, she is unconcerned with price impact. As a result, she exits from a bad firm

completely, and so it receives the lowest possible price of v under any ownership structure.

This contrasts the core model where, in some equilibria, the investor only partially sells a bad

firm, to disguise the sale as being motivated by a shock and receive a price exceeding v.

Consider voice. Under the core model, governance was stronger under common ownership

through two channels. The first is the lower payoff to cutting and running: under separate

ownership, the investor receives a price exceeding v; under common ownership, adverse selection

is more severe and so she receives only v. This effect no longer operates here, because the

investor’s payoff is r under cutting and running, irrespective of ownership structure. However,

the second channel – the higher payoff to monitoring and intervening – continues to operate.

Under separate ownership, an investor is forced to sell a good firm upon a shock, and receives

r < v on the amount that she sells. Under common ownership, she can satisfy her shock by

selling only bad firms, and thus receives the full payoff of v from good firms.

However, the analog to this second channel – the higher payoff to working – does not apply

in the exit model. Importantly, the manager’s payoff depends on the security price pi, and not

the amount received by the investor r. Under separate ownership, if L/n < r, a working firm

is only partially sold upon a shock. As a result, it still receives the full price of v, because the

market maker knows that the investor would have fully sold the firm if it had shirked. Thus,

even though the investor only receives r for the part that she sells, reducing her payoff from

monitoring in the exit model, the manager receives a price of v. As a result, the reward for

working and punishment from shirking are already at the maximum level of R−R+ω∆ under

separate ownership, and cannot be improved upon by common ownership.

Proposition 19 (Discontinuing relationships, low reservation payoff): Suppose r < v. Then,

per-security monitoring (working) incentives in any equilibrium of voice (exit) under common

ownership are strictly higher than under separate ownership if and only if L/n < r, and the

same otherwise.

Proof of Proposition 19. We start by deriving the trading strategies given τ , and then
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endogenize τ under the voice and exit models. Consider separate ownership. Since r < v, the

investor exits if and only if she needs liquidity. Therefore:

x∗so (vi, θ) =

0 if θ = 0

xso = nmin
{

1, L/n
r

}
if θ = L.

Under common ownership, the trading strategy is given by:

x∗co (vi, θ) =


0 if θ = 0

xco,good(τ) = min
{

1,max
{

0, L/n−r(1−τ)
τr

}}
if vi = v and θ = L

xco,bad (τ) = min
{

1, L/n
r(1−τ)

}
if vi = v and θ = L.

(70)

The investor exits only if she needs liquidity; if so, she exits bad firms first.

Next, we endogenize τ using the voice model. Consider separate ownership. Given the

trading strategies, the investor monitors if and only if

(1− β)v + β

(
xso
n
r +

(
1− xso

n

)
v

)
− c̃i
n
> (1− β)v + β

(
xso
n
r +

(
1− xso

n

)
v

)
where the LHS (RHS) is her payoff from monitoring (not monitoring). This inequality yields
c̃i
n
<
(
1− β xso

n

)
∆. Consider common ownership. There are two cases to consider.

1. If L/n < r, the investor’s expected payoff is given by

Π(c∗) = −F (c∗)E[ci|ci < c∗]

+


F (c∗)v + (1− F (c∗))[v + βxco,bad (F (c∗)) (r − v)] if c∗ ≤ F−1(1− L/n

r
)

F (c∗)[v + βxco,good(F (c∗)) (r − v)]

+(1− F (c∗))[(1− β) v + βr]
if c∗ > F−1(1− L/n

r
)

= −F (c∗)E[ci|ci < c∗] + F (c∗)v + (1− F (c∗))v + β
L/n

r
(r − v) .

The first-order condition implies c∗ = ∆, which is strictly higher than under separate

ownership.

2. If r ≤ L/n, the investor sells her entire portfolio if she suffers a shock, and fully keeps it
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otherwise. Her expected payoff is given by

Π(c∗) = F (c∗)[(1− β) v + βr] + (1− F (c∗))[(1− β) v + βr]− F (c∗)E[ci|ci < c∗].

The first-order condition implies c∗ = (1− β) ∆, which is the same as under separate

ownership.

We finally endogenize τ using the exit model. We first derive the prices. Under separate

ownership, prices are p∗i (xi) = v + τ∆. Under common ownership, there are three cases to

consider.

1. If L/n ≤ r (1− τ) the investor never exits good firms and prices are:

p∗i (xi) =

v + ∆ τ
1−β+βτ

if xi = 0

v if xi = xco,bad (τ) .
(71)

2. If r (1− τ) < L/n < r, the investor fully exits bad firms and partially exits good firms

upon a shock. Therefore,

p∗i (xi) =


v + τ∆ if xi = 0

v if xi = xco,good(τ) < 1

v if xi = 1.

(72)

3. If L/n ≥ r, the investor sells her entire portfolio upon a shock and retains it otherwise.

Thus, prices are p∗i (xi) = v + τ∆.

Consider the manager’s incentives under separate ownership. In this case, the investor’s

decision to exit, and thus prices, are independent of the manager’s action. Therefore, the

working threshold is R−R. Consider common ownership and the three cases in turn:

1. If L/n ≤ r (1− τ), the manager works if and only if

R− c̃i + ω(v + ∆
τ

1− β + βτ
) ≥ R + ω

(
βv + (1− β) (v + ∆

τ

1− β + βτ
)

)
⇔

R−R + ωβ∆
τ

1− β + βτ
≥ c̃i.
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Thus, an optimal cutoff rule must satisfy

c∗ = R−R + ωβ∆
F (c∗)

1− β + βF (c∗)
,

which is strictly greater than R−R.

2. If r (1− τ) < L/n < r, the manager works if and only if

R− c̃i + ω(βv + (1− β) (v + τ∆)) ≥ R + ω(βv + (1− β) (v + τ∆))⇔

R−R + ωβ∆ ≥ c̃i,

which is strictly greater than R−R.

3. If r ≤ L/n, the price is always v + τ∆ and the working threshold is R−R.

The intuition is as follows. Since the reservation payoff is so low, the investor never exits,

even from a bad firm, unless she is forced to do so by a shock. Upon a shock, the investor

sells the minimum amount possible, regardless of whether the firm is good or bad. As a result,

voice is stronger under common ownership for a similar reason to the high-r case of Proposition

18 (and also the core model): under a shock, the investor can sell bad firms more and good

firms less, and thus enjoy a higher payoff from monitoring. Unlike in the high-r case, exit is

also stronger under common ownership. With high r, exit was already the strongest possible

under separate ownership, since the investor fully sold bad firms. Here, she sells a firm to the

minimum extent possible, regardless of whether it is good or bad, and so the manager’s price

incentives to work are zero. Under common ownership, she sells shirking firms more and good

firms less, thus creating price incentives to work.

C.4 Heterogeneous Firms

In the core model, all firms have the same distribution of valuations. We now analyze the

case in which firms have different valuation distributions, and thus differ in their information

asymmetry and the price impact of selling. For brevity, we consider the small shock case, since

this is where our results are strongest.
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For example, suppose there are J ≥ 1 classes of firms. The valuation of firm i in class

j ∈ {1, ..., J} is vj ∈
{
vj, vj

}
where ∆j ≡ vj − vj > 0. We assume vj′ < vj′′ for all j′ ∈ J and

j′′ ∈ J , i.e. the worst good firm is more valuable than the best bad firm. We also index by j

the exogenous parameters F , ω, R, and R. We maintain the assumption that each firm has its

own market maker, and the class to which firm i belongs is common knowledge. All random

variables are independent across firms and classes.

The analysis of separate ownership remain unchanged; we now add a subscript j to the

benchmarks under separate ownership to denote that they apply to a firm of class j. Under

common ownership, we assume the investor owns a mass of nj ≥ 0 firms from class j.

Proposition 20 (Heterogeneous firms):

(i) Consider the voice model and suppose L ≤
∑J

j=1 njvj (1− Fj (∆j)). In any equilibrium

under common ownership, per-security monitoring incentives are strictly higher than un-

der separate ownership.

(ii) Consider the voice model and suppose L ≤
∑J

j=1 njvj
(
1− Fj(Rj −Rj + ∆jωj)

)
. There

is an equilibrium in which the working threshold is strictly greater than under separate

ownership.

Proof of Proposition 20. Consider the voice model under common ownership. We argue

that, if L ≤
∑J

j=1 njvj (1− Fj (∆j)), then c∗j = ∆j in any equilibrium. If true, noting that

c∗so,voice,j < ∆j completes the proof of part (i). We first show that such an equilibrium exists.

Since L ≤
∑J

j=1 njvj (1− Fj (∆j)), under this equilibrium the investor never has to sell a good

firm from any class to satisfy her liquidity needs. Since vj′ < vj′′ for all j′ and j′′, the investor

has weak incentives to sell only bad firms, and only as much as needed in satisfy her liquidity

needs. Therefore, and similar to the core model, if firm i belongs to class j, it must be that

xi > 0 ⇒ pi (xi) = vj. Given this pricing rule, and regardless of her expected liquidity needs,

the investor solves

max
c∗1,...,c

∗
J

J∑
j=1

nj
(
Fj(c

∗
j)vj + (1− Fj(c∗j))vj − Fj(c∗j)Ej[ci|ci < c∗j ]

)
.

The first-order condition with respect to firms from class j implies c∗j = ∆j. To see that no

other equilibrium exists, first note that in any equilibrium, c∗i ≤ ∆i. Indeed, the investor’s
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benefit from monitoring a firm of type i cannot exceed ∆i, and so there is no equilibrium in

which c̃i > ∆i and the investor monitors. Consider an equilibrium in which c∗∗j ≤ ∆j for all j

and there is j′ such that c∗∗j′ < ∆j′ . Note that this implies

J∑
j=1

njvj
(
1− Fj

(
c∗∗j
))
≥

J∑
j=1

njvj (1− Fj (∆j)) ≥ L,

and so the investor never has to sell a bad firm to satisfy her liquidity need. Therefore, in

this equilibrium, if firm i belongs to class j′, then xi > 0 ⇒ pi (xi) = vj′ .
34 However, this

contradicts c∗∗j′ < ∆j′ , since the investor can benefit from monitoring firms from class j′ if

c̃i ∈
(
c∗∗j′ ,∆j′

)
.

Consider the exit model under common ownership. We argue that, if

L ≤
J∑
j=1

njvj
(
1− Fj(Rj −Rj + ∆jωj)

)
,

there is an equilibrium under common ownership with c∗j = ∆j. If true, noting that c∗so,exit,j <

∆j completes the proof of part (ii). Since L ≤
∑J

j=1 njvj
(
1− Fj(Rj −Rj + ∆jωj)

)
, under

this equilibrium the investor never has to sell a good firm from any class in order to satisfy her

liquidity needs. Since vj′ < vj′′ for all j′ and j′′, the investor has weak incentives to fully sell

all bad firms, and fully retain all good firms, regardless of her liquidity needs. Therefore, and

similar to core model, if firm i belongs to class j, it must be that xi > 0 ⇒ pi (xi) = vj and

pi (0) = vj. Given this pricing rule, the manager of firm i who belongs to class j works if and

only if

Rj − c̃i + ωjvj ≥ Rj + ωjvj ⇔ Rj −Rj + ωj∆j ≥ c̃i,

as required.

The intuition is as follows. Regardless of whether the firms have the same or different payoff

distributions, it remains the case that, for a sufficiently small shock, common ownership allows

the investor to fully retain good firms upon a shock, thus maximizing the payoff to monitoring

under voice and working under exit. As a result, the adverse selection problem upon selling is

severe, thus minimizing the payoff to not monitoring under voice and shirking under exit.

34The arguments are the same as in the baseline model, and thus omitted for brevity.
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C.5 Spin-Offs and Mergers

We consider the case of small or intermediate shocks (L/n < v) and β = 1.35 We analyze both

the voice and exit models under two cases: a merged entity, and n divisions after a spin-off.

(We will sometimes use “division” and “firm” separately.) The only difference is that, in the

latter, each firm can be traded separately. Thus, in the voice model we are assuming that the

investor can monitor each division separately even upon merger (if she cannot, then spin-offs

provide an additional benefit). In the exit model, under merger, we assume that the managers

of each division are compensated based on the security price of the merged entity, and the

investor can observe each manager’s actions separately. (The results would be the same if she

could only observe the aggregate value of the merged entity.)

Under merger, the investor must engage in balanced exit and cannot sell good divisions

more and bad divisions less. Thus, in equilibrium, the amount that she sells of firm i is

uninformative of its fundamental value. If the market maker believes that the investor follows

threshold c∗, the expected value of each firm is v + F (c∗) ∆. This implies that, if xi is on the

equilibrium path, the price of firm i must be pi (xi) = v + F (c∗) ∆. Therefore, the investor

sells xspin (F (c∗)) = L/n
v+F (c∗)∆

, just enough to meet her liquidity need. In particular, suppose

the prices of firm i are:

p∗i (xi) =

v + τ∆ if xi ≤ xspin (F (c∗))

v if xi > xspin (F (c∗)) .

Under the exit model, price informativeness is zero since the investor always engaged in bal-

anced exit. Thus, governance is absent upon merger, and so c∗ = R−R. This threshold is less

than in the core model under common ownership (where c∗ > R − R for L/n < v), and thus

under a spin-off

Consider the voice model and let the market maker’s expected threshold be c∗, but the

investor chooses c 6= c∗. She must sell at least xspin (F (c∗)) from all firms to meet her liquidity

needs. If c < c∗, the investor is monitoring less than expected, and thus has incentives to sell

as much as she can from all firms. However, since xi > xspin (F (c∗))⇒ p∗i (xi) = v, she has no

incentives to do so as long as c ≥ 0, and she will choose xi (c) = xspin (F (c∗)). If c > c∗, the

35The results for the exit model extend to all β ∈ [0, 1]. For the voice model, a pure-strategy equilibrium for
the investor’s monitoring decision does not exist if β < 1.
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investor is monitoring more than expected, and thus has incentives to sell as little as she can

from all firms, and will choose xi (c) = xspin (F (c∗)) as well. Her expected payoff is:

Π (c∗, c) = xspin (F (c∗)) (v + F (c∗) ∆) + (1− xspin (F (c∗))) (v + F (c) ∆)

−F (c)E [ci|ci < c]

This implies
∂Π (c∗, c)

∂c

1

f (c)
= −c+ ∆

[
1− L/n

v + F (c∗) ∆

]
,

and an equilibrium must solve

c∗ = ∆

[
1− L/n

v + F (c∗) ∆

]
.

Since the RHS is bounded within
[
∆
(

1− L/n
v

)
,∆
(

1− L/n
v+∆

)]
⊂ (0,∆), a solution always

exists. Note that this solution is smaller than ∆ and that L/n < v implies

ζvoice (τ) > ∆

(
1− L/n

v + τ∆

)
= φvoice (τ) .

Therefore, the level of monitoring is less than the core model under common ownership, and

thus under a spin-off.
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