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Abstract

I develop a model of information acquisition in dynamic financial markets. In equilib-
rium, prices reflect investors’ expectations about the cash flows and the supply of a risky
asset. Contrary to static models, supply has a significant informational role in markets
because it predicts capital gains. Investors decide whether to obtain superior information
about dividends at a cost, which also enables them to learn information about supply. In-
vestors who decide to be uninformed learn about dividends and supply from prices. I show
that as more informed investors enter the economy, prices become more informative about
dividends but less informative about supply. This trade-off creates complementarities in
information acquisition. As a result, the information market has multiple equilibria, each
with different implications for the financial market.
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1 Introduction

One of the central questions of finance is how information gets incorporated into asset prices.

This topic has occupied the minds of economists at least as far back as Hayek (1945), who points

out that information enters prices through the trades of informed investors. But exactly what

kind of information do prices incorporate? In static, one-period descriptions of asset markets,

information is about the liquidating cash flows of risky assets. In dynamic markets, however,

investors buy assets to enjoy a stream of dividends and at the same time they are concerned

with future price fluctuations. Therefore, prices convey not only what informed investors know

about future cash flows, but also what they know about future prices.

By taking this feature of dynamic markets into account we are able to gain new insights

into information acquisition. From the perspective of uninformed agents, current prices are a

noisy signal of dividend information because they depend on unknown information about future

prices. At the same time, current prices are a noisy signal of information about future prices

because they depend on unknown dividend information. In other words, prices are non-fully

revealing signals of either type of information. This stands in contrast to static markets, where

the component of prices that prevents them from fully revealing dividend information does not

convey useful information.

I study endogenous information in dynamic markets by extending the static economy of

Grossman and Stiglitz (1980). I show that acquiring information in static markets and acquiring

information in dynamic markets are qualitatively very different. In the one-period version of

the economy the value of information is always decreasing in the number of informed agents. As

more informed agents enter the economy, having private information is less valuable because

there is more dividend information available publicly through prices. On the contrary, in

the dynamic version of the economy, the value of private information can be increasing in the

number of informed agents. This distinction arises because higher incidences of informed agents

have different implications for the two types of information embedded in prices of dynamic

markets.

In order to analyze information acquisition tractably, I model information about future

prices as a stochastic stock supply process.1 I first consider the case where the persistence of

supply is low because in this case supply captures information about short-term capital gains.

If, for instance, supply is independent over time, changes in supply are predictable by levels

of supply. Moreover, because prices depend on supply, levels of supply predict how prices

change in the near future. This predictability makes supply a vehicle of valuable information

in dynamic financial markets.

For example, suppose that in between dividend payouts liquidity traders enter and leave the

market for reasons exogenous to the stock, exposing all other market participants to fluctuations

1This is in the spirit of Campbell and Kyle (1993), who make returns predictable by stochastic supply levels.
It is also a natural extension of the assumptions of Grossman and Stiglitz (1980) to a dynamic setting.
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in supply.2 Using the predictability of supply fluctuations by supply levels, long-term market

participants can take positions in the stock so as to generate capital gains at the expense of the

liquidity traders. This aspect of supply information as a source of profits means that investors

are willing to pay for information on supply levels.

In order to simplify the analysis, I assume that investors make information decisions once

and for all before trading begins. They decide whether to obtain information about the dividend

at a fixed cost or remain uninformed for free, knowing that they will be observing prices in

the financial market. Prices, however, depend on dividend information and supply. Thus,

investors who purchase superior dividend information also have superior supply information

because they observe prices. Investors who do not purchase information have to estimate both

dividend and supply information from prices. Furthermore, the exact amount that investors are

willing to pay for superior information depends on how many other investors become informed.

This is because the number of informed agents determines the informativeness of prices about

dividends and supply.

In fact, for agents who decide to be uninformed, the number of informed agents presents a

trade-off in how much information they can extract from prices. As I have argued above, prices

are a noisy version of dividend information because they depend on unknown supply. Similarly,

prices are a noisy version of supply because they depend on unknown dividend information.

Thus the total amount of information contained in prices is a weighted average of dividend

information and supply information. The weight of each type of information is determined in

equilibrium as a function of the number of informed agents. Most importantly, if the weight of

one type of information increases, then the weight of the other type of information decreases.

Now consider what happens as more informed agents enter the economy. As in classic informa-

tion acquisition, prices become less noisy versions of dividends because there is more dividend

information available. This implies that the weight of dividend information in the information

content of prices increases. But it also implies that the weight of supply information decreases,

and therefore prices become noisier versions of supply.3

That is, higher numbers of informed agents make prices more informative about dividends

but less informative about supply. This information trade-off has great implications for how

much agents are willing to pay for information. On the one hand, more informed agents make

private information less valuable because dividend information becomes easier to extract from

prices. On the other hand, more informed agents also make private information more valuable

because private information contains superior supply information, which becomes harder to

extract from prices. This is important because supply captures information about short-term

capital gains.

When there are few informed agents in the economy, most of the profits of agents who opt

to be uninformed come from having accurate predictions of capital gains. As the number of

informed agents increases, uninformed agents lose accuracy of supply information and gain ac-

2For a literature summary and critique of noise traders and liquidity traders, see Dow and Gorton (2008).
3See section 5.1 for a detailed analysis.
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curacy of dividend information, but they must also face more traders with superior information.

This implies that they lose benefits from supply information faster than they receive benefits

from improved dividend information. As a result, the ex-ante willingness of agents to pay for

information is increasing in the number of informed agents. Namely, other agents becoming

informed is a complement for uniformed agents acquiring information directly.

As the number of informed agents keeps increasing, agents who decide to be uninformed

give up the ability to predict capital gains because they get compensated by knowing more

precise dividend information. Moreover, higher numbers of informed agents implies that agents

who decide to be informed face more competition for information rents. As a result, for large

numbers of informed agents the ex-ante willingness of agents to pay for information is decreasing

in the number of informed agents. In this case, other agents becoming informed is a substitute

for uniformed agents acquiring information directly.

The information complementarity for small numbers of informed agents combined with the

information substitutability for large numbers of informed agents produces a value of informa-

tion that is non-monotonic in the number of informed agents. Hence, in an economy where asset

prices and levels of information are determined jointly there can be more than one equilibrium.

I construct examples with two equilibria of equal informational value: one with a low number

of informed agents and another with a high number of informed agents. Uninformed agents es-

timate dividends more accurately in the latter equilibrium than in the former equilibrium, and

they estimate supply more accurately in the former equilibrium than in the latter equilibrium.

The two equilibria correspond to time-series of prices with potentially very different properties.

So far I have assumed that the level of supply available in every period is independent of its

past. I generalize the supply process by making it persistent and I show that supply persistence

plays an important role in whether complementarities emerge. An example of persistent supply

is the following. Consider a trader who loses his job and is thereby forced to sell some of his

stock. How much he supplies to the market will exhibit persistence over time: every day that

he remains unemployed he is forced to sell some more of his stock.

This generalized supply assumption allows me to examine how information acquisition works

in asset-pricing environments with capital gains that are predictable by mean-reverting supply.

Examples of such economies are the smart-money model of Campbell and Kyle (1993) and the

asymmetric information model of Wang (1993). Here, how much the level of supply predicts

supply fluctuations depends on the persistence of supply. If supply is more persistent, the level

of supply predicts supply fluctuations less, and thus supply has smaller informational value.

Because information complementarities come only from supply information effects, more persis-

tent supply produces less pronounced information complementarities. The complementarities

disappear completely in the limit case of when supply follows a random walk. But this case

is economically troublesome because it implies that prices are not stationary even if economic

fundamentals are stationary. Therefore, in dynamic markets, information complementarities

are not only more economically interesting than information substitutabilities, they are also

more plausible.
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The model produces two empirical predictions. Firstly, when complementarities are present,

prices can be fragile in perturbations of information costs. When the persistence of supply is

low, the value of information as a function of the number of informed agents has the shape

of an inverted U for large parts of the parameter space. Suppose that the cost of acquiring

information corresponds to a value of information very near the peak of the inverted U. In this

case there are two equilibrium incidences of informed agents, one to the left of the peak and

one to the right of the peak. Further suppose that the economy is at the equilibrium to the

left of the peak. Then a small perturbation in the cost can move the equilibrium to the right

of the peak. Because the equilibrium number of informed agents is a parameter in prices, this

results in shifts in the variability of prices.

Secondly, in the absence of dividend news, extremely persistent supply inhibits uninformed

investors’ learning about dividends. Initial price observations help the uninformed update

their prior beliefs about dividends, but subsequent prices contribute nothing to learning. This

contradicts the casual intuition that the value of fundamentals would be gradually revealed

through prices by informed agents trading their information away. Moreover, it is particularly

puzzling because what the informed know about dividends does not change. The explanation

is that extremely persistent supply makes intertemporal information completely unrelated to

dividends. If there are no direct news about dividends, investors use changes in prices in order

to learn news indirectly.4 I show that when supply follows a random walk, equilibrium price

changes do not convey any information about dividends. On the contrary, when the persistence

of supply is low, price changes do reveal some dividend information. In this case, longer price

series correspond to more precisely known dividend information.

In this study the dependence of prices on supply plays a dual role. It conveys non-dividend

information about future prices and it makes prices noisy signals of dividend information. Using

economic variables other than supply to replicate this role will not change the informativeness

trade-off and the main result. Several examples of such interpretations can be found in the

literature. Diamond and Verrecchia (1981) model price noise as unknown aggregate supply of

stock, where the private stock endowment of each agent is a signal of aggregate supply. Wang

(1994) assumes that price noise arises from private investment opportunities available only to

informed investors. Finally, Vives (2008) section 4.4.1 gives an environment where the full

revelation of information is prevented by the presence of agents that hedge against non-traded

goods.

The studies closest to this paper are Grossman and Stiglitz (1980), that considers a single-

period financial market, and Wang (1993), that derives a dynamic equilibrium with an ex-

ogenous number of informed agents. In related work, Grundy and McNichols (1989) study the

volume of trade in a multiperiod noisy rational expectations model. Holden and Subrahmanyam

(2002) generate momentum in asset returns in a model where agents can trade before they ac-

quire information. Manela (2011) calibrates a two-trading period Grossman-Stiglitz economy in

4For example, the price change between yesterday and today is a channel of today’s news because it conveys
what was not known yesterday but becomes known today.
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order to study how exogenous rates of information dissemination through media affect returns

in the market for pharmaceutical drugs. These papers build on the concept of noisy rational

expectations introduced by Lucas (1972) and applied to information flows by Green (1973),

Grossman (1976, 1978), Kihlstrom and Mirman (1975) and Grossman, Kihlstrom, and Mirman

(1977). In this paper I focus on how the information market works when the financial market

is intertemporal. I show that when price noise is not persistent there are complementarities in

information acquisition. Moreover, I only consider informed agents that hold the same piece of

information. Papers that study the aggregation of diverse information and its effects on infor-

mation acquisition include Hellwig (1980), Diamond and Verrecchia (1981), Verrecchia (1982)

and others.

This paper also relates to a growing literature about complementarities in information

acquisition. There are several mechanisms that produce information complementarities in a

static environment. They include correlated fundamentals and supply (Barlevy and Veronesi,

2000, 2008), fixed costs in the information production sector as in Veldkamp (2006), supply

signals (Ganguli and Yang, 2009; Manzano and Vives, 2011), non-normal returns (Breon-Drish,

2010), ambiguity aversion (Mele and Sangiorgi, 2011), information acquisition in segmented

markets (Goldstein, Li, and Yang, 2011), information acquisition with diverse information

(Goldstein and Yang, 2011) and others. What is new with respect to this literature is that

complementarities obtain in a CARA-normal environment by assuming that financial markets

are dynamic. This natural assumption produces a supply information channel which works in

opposition to the dividends information channel.

The next section describes the setup of the model. Section 3 describes the equilibrium in the

financial market assuming an equilibrium in the information market. Section 4 describes the

overall equilibrium in the information market. Section 5 discusses and analyzes the information

trade-off, complementarities and further results. Section 6 considers how the information mar-

ket equilibrium works in a continuous-time version of the model and argues that the two-period

environment is enough to capture the economic forces at work. Finally, section 7 summarizes

the paper and outlines avenues of further research.

2 The Model

There is a continuum of ex-ante identical agents of total mass one. Each agent has constant

absolute risk aversion preferences with coefficient δ. Everyone has initial wealth W0 which he

can invest in a safe storage technology with constant net return normalized to zero and in a

risky stock. There are two trading periods, t = 1 and t = 2, during which agents trade the

stock but do not consume. This is followed by a consumption-only period, t = 3. The stock

pays off a risky dividend D3 only in the consumption period. It is known that the dividend is

made up of two parts,

D3 = µ̃+ ζ̃,
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t = 0

Acquire information
(observe µ̃) at cost κ0
or remain uninformed

t = 1

µ̃

θ̃1

Update and trade

t = 2

µ̃

θ̃2 = ρθ̃1 + η̃

Update and trade

t = 3

D3 = µ̃+ ζ̃

Consume

Figure 1: The sequence of events in the model.

where µ̃ ∼ N (0, σ2µ) and ζ̃ ∼ N (0, σ2ζ ) with µ̃ independent of ζ̃. Before the two trading periods

there is an information acquisition period, t = 0, during which every agent can pay κ0 so as

to observe the value of µ̃ right before trading starts at t = 1. The random variable ζ̃ captures

the residual dividend uncertainty faced by informed agents. An agent might also decide not to

pay κ0 at the information acquisition stage and thereby remain uninformed for the duration of

trading. Thus for an uninformed agent D3 is a random variable over which he has the prior

D3 ∼ N (0, σ2µ + σ2ζ ).

At t = 1 the price is P1 and at t = 2 the price is P2. Because prices depend on the value of

µ̃, the uninformed agent uses prices in order to update his beliefs about µ̃. Let µ̂1 and µ̂2 be

the uninformed agent’s estimate of µ̃ at t = 1 and t = 2.

If prices contained no more unknowns than just the mean dividend µ̃, the uninformed would

be able to infer the mean dividend perfectly and there would be no environment of asymmetric

information. Thus the presence of noise is necessary in prices. As is standard in the literature, I

fill this modeling necessity by making the supply of stock at time t, θ̃t, stochastic. Furthermore

I assume that

θ̃2 = ρθ̃1 + η̃

where I take 0 ≤ ρ ≤ 1.5 Here θ̃1 and η̃ are independent of each other and of µ̃ and ζ̃. When

ρ = 0 the supply is independent over time. This has the interpretation of noise traders arriving

each period in the financial market, as in Kyle (1985). When ρ > 0 some noise traders that

entered the market at t = 1 remain in the market for t = 2. Positive ρ therefore measures

the persistence of liquidity shocks faced by the noise traders. The priors over supply are

θ̃1 ∼ N (0, σ2θ ) and η̃ ∼ N (0, σ2η). If an agent decides to become informed he will not only see µ̃,

but also the price at t = 1 and t = 2. As explained shortly, the informed agents will be able to

deduce perfectly the level of supply at each point in time. At the same time, the uninformed

agents will be able to estimate also this piece of information by observing prices. Let θ̂1 be the

uninformed agent’s estimate of θ̃1 at t = 1 and let θ̂2 be his estimate of θ̃2 at t = 2.

See figure 1 for a graphical depiction of the sequence of events in the model. Each agent an-

5This supply assumption is the discrete-time equivalent of the mean-reverting supply assumption of Campbell
and Kyle (1993) and Wang (1993).

7



ticipates rationally the trade-and-update process at the two trading periods. In the information-

acquisition period he compares the benefits of being informed versus the cost of giving up κ0.

The benefit of being informed, however, depends on the number of agents that will have de-

cided to be informed, because the presence of informed agents influences the informativeness of

prices. Let λ denote the fraction of informed agents. The information market will equilibrate

at the λ at which every agent is indifferent between paying to become informed and remaining

uninformed for free. It is also possible that information is too cheap, in which case the economy

will equilibrate at λ = 1, or that information is too expensive, in which case the economy will

equilibrate at λ = 0.

3 Financial Market Equilibrium

I construct the equilibrium in the financial market in a conjecture-and-verify approach. The

equilibrium concept I use is that of rational expectations, developed by Lucas (1972), Green

(1973), Grossman (1976) and Kreps (1977). In particular, I use a discrete-time finite-horizon

version of the continuous-time steady-state equilibrium of Wang (1993). Let i denote the

informed agents and u denote the uninformed agents.

Definition 1 (Financial Market Equilibrium). A Financial Market Equilibrium at a fraction

λ of informed agents is a pair of prices
(

P λ1 , P
λ
2

)

such that

(a) Agents in group j, j = i, u, select their demand in period t based on their information set

F j
t so as to maximize expected utility.

(b) The prices
(

P λ1 , P
λ
2

)

are such that in each period total demand for the stock equals total

supply of the stock.

(c) Agents in group j, j = i, u, extract their information sets F j
t rationally from the history of

prices and any other information available to them in period t, for t = 1, 2.

At t = 1 the value function of the uninformed is Ju(W0, P
λ
1 ;λ) and the value function of

the informed is J i(W0, P
λ
1 , µ̃;λ). For the rest of this section I drop the dependence on λ.

3.1 Prices and Information

I conjecture that prices are linear in state variables for a fixed number λ of informed agents:

P1 = qµµ̃+ qθθ̃1 + qµ̂µ̂1 + qθ̂θ̂1, (1a)

P2 = pµµ̃+ pθθ̃2 + pµ̂µ̂2 + pθ̂θ̂2. (1b)

The only objects in prices that do not depend on λ are µ̃, θ̃1 and θ̃2. At t = 1 an uninformed

agent observes P1 only and at t = 2 he observes P2 only, but remembers P1. Thus information
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sets of the uninformed are the σ-algebras

Fu
1 = σ(P1)

Fu
2 = σ(P1, P2).

The uninformed estimate mean dividends and supply level given their information at each point

in time,

t = 1 : µ̂1 = E [µ|Fu
1 ] , θ̂1 = E [θ1|F

u
1 ] ,

t = 2 : µ̂2 = E [µ|Fu
2 ] , θ̂2 = E [θ2|F

u
2 ] .

These inferences are given as the solution to a Kalman filter problem solved in the appendix.

Here I present briefly how this estimation works. The inferences µ̂1 and θ̂1 belong to Fu
1 so

the uninformed treat them as known. Therefore from (1a) what the uninformed observe when

they see P1 is the price signal

y1 = qµµ̃+ qθθ̃1.

The inferences µ̂1 and θ̂1 are linear transformations of this price signal. Similarly at t = 2 what

the uninformed observe when they see P2 is the price signal

y2 = pµµ̃+ pθθ̃2,

so the inferences µ̂2 and θ̂2 are linear combinations of this price signal and y1. This also means

that µ̂2 and θ̂2 are linear combinations of µ̃, θ̃1 and θ̃2. As a result the price representation (1)

is equivalent to

P1 = q′µµ̃+ q′θθ̃1, (2a)

P2 = p′µµ̃+ p′θ2 θ̃2 + p′θ1 θ̃1. (2b)

where q′µ and q′θ are linear combinations of the price coefficients in (1a) and p′µ, p
′
θ2

and p′θ1 are

linear combinations of the price coefficients in (1b).6

Moreover, for uninformed agents observing the price signals y1 and y2 is equivalent to

observing
1

qθ
y1 = qµθµ̃+ θ̃1

and
1

pθ
y2 = pµθµ̃+ θ̃2,

where qµθ denotes the ratio qµ/qθ and pµθ denotes the ratio pµ/pθ. Therefore prices are noisy

6The price function (2a) is the same as that in Grossman and Stiglitz (1980) and (2b) is the extension of
their price function to the second period. The representation (1) is motivated by Wang (1993) and is easier to
work with in this setup.
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signals of dividends where the noise is the supply and qµθ and pµθ are sensitivities of price

information to dividend information. Moreover, because at t = 2 the price signal at t = 1 has

already been seen the new information content of y2 is

1

pθ
y2 −

ρ

qθ
y1 = (pµθ − ρqµθ) µ̃+ η̃.

This says that pµθ−ρqµθ is the sensitivity of price information to dividend information adjusted

for learning.

The informed agents also observe the price signals y1 and y2. But because they know µ̃,

they effectively observe θ̃1 and θ̃2. Thus the information sets of the informed are the σ-algebras

F i
1 = σ(µ̃, P1) = σ(µ̃, θ̃1)

F i
2 = σ(µ̃, P1, P2) = σ(µ̃, θ̃1, θ̃2).

The information market is open only at time zero, at which time all agents are identi-

cally uninformed. Everyone’s initial information set Fu
0 is fully characterized by the priors as

described above.

3.1.1 The Difference From Static Financial Markets

There are three returns in the model, D3 − P2, D3 − P1 and P2 − P1. In a static market with

trading at t = 2 the only driver of the value of information would be the informativeness of P2

about D3 − P2. The dynamic market has an additional trading period at t = 1, at which time

the agents are concerned with how well they know D3 − P1 and P2 − P1. The informativeness

of P1 about D3 − P1 is similar to that in a static market with trading at t = 1. The main

difference between my model and a static market is the informativeness of P1 about returns

between t = 1 and t = 2,

P2 − P1 =
(

p′µ − q′µ
)

µ̃+
(

ρp′θ2 + p′θ1 − q′θ
)

θ̃1 + p′θ2 η̃.

Because there are no intermediate dividends the returns are capital gains. There are two

channels through which price communicates information about the capital gain, µ̃ and θ̃1. The

quantity ρp′θ2 + p′θ1 − q′θ links P2 − P1 to supply. The estimation of θ̃1 improves when prices

are more informative about supply. Prices are more informative about supply when they load

more on θ̃1. But that means that they are noisier signals of dividends. That is, although the

supply channel conveys information about the capital gain it plays the role of noise in how

price conveys dividend information. Agents would like to have accurate information about

both dividends and supply, so the value of information depends on two information channels

that are at odds with each other. This tension is absent from static financial markets because

what makes supply valuable information is the iteration of trading.

If the model included an intermediate dividend at t = 2, the return between t = 1 and t = 2
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would include a dividend component and the capital gain as above. This would enhance the

role of dividend information in determining returns, but supply would still play a part. I solve

a general model with intermediate dividends and interim consumption in section 6. I show that

the supply information channel remains important even with these additions. For clarity of

exposition I present the model with dividends and consumption only at the liquidating stage.

3.2 Portfolio Choice

First I fix the fraction λ ∈ [0, 1] of informed agents. Each agent in group j, j = i, u is going to

select first-period demand xj1 and second-period demand xj2 to maximize first-period expected

utility. Doing so he will enjoy value J j(W0, S
j) at time one,

J j(W0, S
j) = max

xj
1
,xj

2

E

[

−e−δc
j
3

∣

∣

∣
F j
1

]

.

where Su = P1 is the state of the uninformed and Si = [P1, µ̃]
T is the state vector of the in-

formed. A discount factor does not appear above because there is only one period of consump-

tion. The intertemporal budget constraints give that for j = i, u the final-date consumption

is

cj3 =W0 + xj2(D3 − P2) + xj1(P2 − P1).

Each agent is going to choose their demand in each period conditional on their information in

that period. The decision problem of each agent group is

J j(W0, S
j) = max

xj
1
,xj

2

{

− e−δW0+δx
j
1
P1E

[

e−δx
j
1
P2+δx

j
2
P2E

[

e−δx
j
2
D3
∣

∣F j
2

]
∣

∣

∣
F j
1

]

}

= −e−δW0 min
xj
1

{

eδx
j
1
P1E

[

e−δx
j
1
P2 min

xj
2

{

eδx
j
2
P2E

[

e−δx
j
2
D3
∣

∣F j
2

]}∣

∣

∣
F j
1

]}

.

The optimal agent demands xit
∗
and xut

∗ are given in the following proposition.

Proposition 1 (Agent Demand). For j = i, u,

(i) The agents’ second-period demand is

xj2
∗
=

E

[

D3 − P2|F
j
2

]

δVar
(

D3 − P2|F
j
2

)

(ii) The agents’ first-period demand is

xj1
∗
=

E

[

P2 − P1 − hj(D3 − P2)|F
j
1

]

δVar
(

P2 − P1 − hj(D3 − P2)|F
j
1

)
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where

hj =
Cov

(

D3 − P2, P2 − P1

∣

∣

∣
F j
1

)

Var(D3 − P2|F
j
1 )

.

In the second period the agents set their demand according to the slope of the returnD3−P2

in a conditional mean-variance graph. In the first period the agents set their demand similarly.

The only difference is that they face risky returns from two periods, P2 − P1 and D3 − P2.

Each agent hedges in an intertemporal fashion, and this investment behavior is measured by

the coefficient hj . As is standard in the portfolio literature I can separate first-period demand

into myopic and hedging components.

Corollary 1 (Decomposition of First-Period Demand). The agents’ first-period demand is

xj1
∗
=

E

[

P2 − P1|F
j
1

]

δVar
(

P2 − P1|F
j
1

) − βj
E

[

D3 − P2 − βj(P2 − P1)|F
j
1

]

δVar
(

D3 − P2 − βj(P2 − P1)|F
j
1

)

where

βj =
Cov

(

D3 − P2, P2 − P1

∣

∣

∣
F j
1

)

Var(P2 − P1|F
j
1 )

.

The first component is analogous to the second-period demand, where the return is now

the myopic return between t = 1 and t = 2. The second component is the hedging demand

of each agent, made up of two terms. The first term is the hedging coefficient of agent group

j, βj. The more each agent thinks distant returns co-vary with immediate returns the more

they hedge. Drawing from literature that documents significant negative autocorrelation in

returns, I expect that βj is a negative number; see Fama and French (1988), Lo and MacKinlay

(1988) and Poterba and Summers (1988). I revisit βj in the results section where I show that

in equilibrium it is negative.

The second term in the hedging demand involves the residual in the following predictive

regression. Suppose that at t = 2 each agent group tried to predict the distant returns D3−P2

using the more immediate returns P2 − P1, and at t = 1 took into account that they would be

running that regression at t = 2. In other words, even though P2 − P1 and D3 − P2 are not

observable at t = 1 each agent understands that the world has the structure

D3 − P2 = βj(P2 − P1) + ej3 (3)

where

Cov
(

P2 − P1, e
j
3|F

j
1

)

= 0

and tries to exhume as much benefit as his information affords him at t = 1. Another interpre-

tation is that every agent forms their demand at t = 1 knowing that at t = 2 they will be seeing

some more information. Therefore at t = 1 they incorporate this future arrival of news into

their current demand. At t = 2 every agent has already seen P1 so the price P2 contains the
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same news as P2−P1. Thus regressing D3 −P2 onto P2−P1 but only on information available

at t = 1 accounts for the expected arrival of news.

3.3 Market Clearing

At each point in time the total agent demand must equal total supply,

λxit
∗
+ (1− λ)xut

∗ = θ̃t.

Imposing market clearing at each point in time, substituting for agent demand and rearranging

for prices gives an expression that I compare to the price conjecture. By matching coefficients

I obtain expressions for the information sensitivities pµθ and qµθ.

Proposition 2 (Equilibrium Price Coefficient Ratios). In equilibrium, for a fixed fraction of

informed investors λ,

(i) The second-period information sensitivity pµθ is

pµθ = −
λ

δσ2ζ
. (4)

(ii) The first-period information sensitivity qµθ is the solution to the equation

[

δp2µθ (pµθ − ρqµθ) + δ
σ2η
σ2ζ

(pµθ − qµθ)−

(

1

σ2ζ
+ δpµθ

)

(pµθ − ρqµθ) (pµθ − qµθ)

]

=
[

pµθ (pµθ − ρqµθ)− δσ2η (pµθ − qµθ)
]

[

(pµθ − ρqµθ)
2

σ2η
+
q2µθσ

2
µ + σ2θ
σ2µσ

2
θ

] (5)

The financial market equilibrium exists when equation (5) has a real root. Moreover, it is

unique when this real root is unique. Because (5) is a cubic equation in qµθ, existence is always

guaranteed. Uniqueness is assured by the condition that the discriminant of (5), ∆qµθ , is non-

positive, because in that case it is well-known that (5) has at most one real root. In addition,

because qµ is the coefficient of mean dividend in prices I require that qµ ≥ 0 and because qθ is

the coefficient of supply in prices I require that qθ < 0. This imposes the additional requirement

that qµθ is not positive. The next proposition summarizes results on existence and uniqueness.

Proposition 3 (Existence and Uniqueness). For a fixed fraction of informed investors λ,

(i) A financial market equilibrium at λ always exists.

(ii) There always exists a financial market equilibrium at λ such that

(a) if λ = 0, then qµθ = 0,

(b) if λ > 0, then qµθ < 0.
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(iii) The financial market equilibrium at λ is unique if the discriminant

∆qµθ = 18γ3γ2γ1γ0 − 4γ32γ0 + γ22γ
2
1 − 4γ3γ

3
1 − 27γ23γ

2
0

is non-positive, where γ3, γ2, γ1 and γ0 are the coefficients of the powers of qµθ in the

polynomial version of (5),

γ3q
3
µθ + γ2q

2
µθ + γ1qµθ + γ0 = 0. (6)

The coefficient γi, i = 0, . . . 3, is a polynomial of order 4− i in pµθ. I give γ3, γ2, γ1 and

γ0 explicitly in terms of the model parameters and pµθ in the appendix.

For every solution, example and graph that I provide in this paper I have checked through

the ∆qµθ non-positivity condition that each equilibrium is unique and that qµ ≥ 0 and qθ < 0.7

Finally, there is an important special case in which I can solve for qµθ explicitly. When supply

follows a random walk it follows by inspection of (5) that qµθ = pµθ.

Corollary 2 (Random-Walk-Supply Solution). When ρ = 1, pµθ − ρqµθ = 0.

Using the ratios pµθ and qµθ I finish the computation of the equilibrium by solving for the

price coefficients. I give expressions for the price coefficients in proposition 9 of the appendix,

whereas here I show graphs of them in figures 2 and 3.

The coefficients of mean dividends and inferred mean dividends are positive because higher

dividends command higher prices. When λ = 0, qµ = 0 = pµ because when there are no

informed agents in the economy their information does not determine prices at all. As λ

increases the coefficients of µ̃ increase because the impact of the informed agents in the economy

increases as there are more of them. A similar reasoning for the uninformed explains why

qµ̂ = 0 = pµ̂ at λ = 1 and why as λ increases the coefficients of µ̂t decrease.

The coefficients of supply are negative because an increase in the level of supply means that

prices drop in equilibrium. The second-period coefficient of supply is increasing in λ reflecting

that as there are more informed agents prices become more informative about liquidating

dividends and therefore the economy is overall less risky. The first-period coefficient of supply

seems to have monotonicity that is very sensitive to the value of ρ. Notice, however, that there

are also indirect supply effects through the inference of the supply level.8 Using that y1 ∈ Fu
1

and y2 ∈ Fu
2 I can write prices in a manner that does not involve the inference over supply,

P1 =
(

qµ + qµθqθ̂
)

µ̃+
(

qθ + qθ̂
)

θ̃1 +
(

qµ̂ − qµθqθ̂
)

µ̂1,

P2 =
(

pµ + pµθpθ̂
)

µ̃+
(

pθ + pθ̂
)

θ̃2 +
(

pµ̂ − pµθpθ̂
)

µ̂2.

In this particular price representation the coefficient of supply in the first period, qθ + qθ̂, has

non-monotonic patterns in λ only for very low values of ρ (see the inlay in figure 2d). This is

7At the time of this writing, I have not found counterexamples to existence, uniqueness, qµ ≥ 0 and qθ < 0.
8In the second period there are no indirect supply effects because pθ̂ = 0. See proposition 9 of the appendix.
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Figure 2: Price coefficients at t = 1 for ρ = 0, 0.5, 1 with δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and ση = 0.5. Solid curves for
ρ = 1, dash-dotted curves for ρ = 0.5 and dashed curves for ρ = 0.

a manifestation of the informativeness trade-off that I describe below. This representation of

prices does not change the monotonicity of any other price coefficients.

4 Information Market Equilibrium

Having obtained the equilibrium in the financial market for each fixed fraction λ, I step one

period back to t = 0 in order to endogenize λ. A candidate equilibrium in the information

market is a tuple of an exogenous cost of information κ0, a fraction of informed investors

λ ∈ [0, 1] and a Financial Market Equilibrium
(

P λ1 , P
λ
2

)

.

Definition 2 (Information Market Equilibrium).

(a) If λ∗ ∈ [0, 1] and

E

[

Ju(W0, P
λ∗

1 ;λ∗)
∣

∣

∣
Fu
0

]

= E

[

J i(W0 − κ0, P
λ∗

1 , µ̃;λ∗)
∣

∣

∣
Fu
0

]

then
(

κ0, λ
∗,
(

P λ
∗

1 , P λ
∗

2

))

is an Information Market Equilibrium.
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Figure 3: Price coefficients at t = 2 for ρ = 0, 0.5, 1 with δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and ση = 0.5. Solid curves for

ρ = 1, dash-dotted curves for ρ = 0.5 and dashed curves for ρ = 0. The coefficient of θ̂2 is always zero.

(b) If E
[

Ju(W0, P
0
1 ; 0)

∣

∣

∣
Fu
0

]

> E

[

J i(W0 − κ0, P
0
1 , µ̃; 0)

∣

∣

∣
Fu
0

]

then
(

κ0, 0,
(

P 0
1 , P

0
2

))

is an Infor-

mation Market Equilibrium.

(c) If E
[

Ju(W0, P
1
1 ; 1)

∣

∣

∣
Fu
0

]

< E

[

J i(W0 − κ0, P
1
1 , µ̃; 1)

∣

∣

∣
Fu
0

]

then
(

κ0, 1,
(

P 1
1 , P

1
2

))

is an Infor-

mation Market Equilibrium.

At t = 0, before the agents decide on their information status, everyone is uninformed, has

wealth W0 and information set Fu
0 . If an agent decides to remain uninformed he will enjoy

value given by the value function Ju. If an agent decides to become informed he will pay κ0 and

he will switch value functions to J i. But Ju(W0, P
λ
1 ;λ) and J

i(W0 − κ0, P
λ
1 , µ̃;λ) are random

variables; before an agent sees P λ1 or µ̃ he does not know what their realization will be. Thus

the comparison of values at t = 0 is done conditional on Fu
0 .

Each type of agent anticipates rationally the workings of the financial market and compares

the benefit of being informed versus the cost of giving up κ0. The benefit of being informed

depends on the fraction λ of agents that are informed, because how many informed agents

exist influences the informativeness of prices about µ̃, θ̃1 and θ̃2. To facilitate the derivation of

this equilibrium, I define the value of information at λ as the relative value of being informed
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against being uninformed.

Definition 3 (Value of Information). The value of information ψ0(λ) is the relative certainty-

equivalent value of being informed,

E

[

Ju
(

W0, P
λ
1 , µ̃;λ

) ∣

∣

∣
Fu
0

]

= E

[

J i
(

W0 − ψ0(λ), P
λ
1 ;λ

) ∣

∣

∣
Fu
0

]

.

Due to CARA utility I can write

eδψ0(λ) =
E

[

Ju(W0, P
λ
1 , µ̃;λ)

∣

∣

∣
Fu
0

]

E

[

J i(W0, P λ1 ;λ)
∣

∣

∣
Fu
0

]

and thus in order to calculate ψ0(λ) I need only calculate the conditional expectations of each

value function conditional on prior information. The CARA-normal environment allows this

calculation in closed form in moments of returns. I provide the details in the appendix.

The cost of information acquisition, κ0, is an exogenous parameter. The equilibrium fraction

of informed agents λ∗ is such that every agent finds that the value of information is the same

as its cost,

κ0 = ψ0(λ
∗).

If κ0 > ψ0(0) then λ∗ = 0 is an equilibrium and if κ0 < ψ0(1) then λ∗ = 1 is an equilibrium.

Thus in order to determine λ∗ I need to derive the entire value-of-information curve as a function

of λ. I give this curve in the main theorem of the paper, where I drop dependence on λ for

notational clarity.

Theorem 1 (Value of Information). The value of information is

e2δψ0 =
Var(D3 − P2|F

u
2 )

Var(D3 − P2|F i
2)

Var (P2 − P1 − hu(D3 − P2)|F
u
1 )

Var
(

P2 − P1 − hi(D3 − P2)|F i
1

) .

There are two terms in the value of information, each coming from a different trading period

in the model. The first term above is the value of information in a Grossman and Stiglitz (1980)

economy starting from t = 2. The better the uninformed agents know the dividends compared

to the informed, the smaller the value of information. The second term is a multiplicative

correction on top of the Grossman-Stiglitz term. It is analogous to the first term because each

term that appears inside the conditional variances is the information that agents use to form

their demand. The better the uninformed know this information in relation to the informed,

the lower the value of information.

There is one caveat in this interpretation. The Grossman-Stiglitz fraction does not reflect

entirely all the information effects at t = 2 because it measures information as if the economy

started at t = 2. At that time, however, the agents have already seen some information at

t = 1. Moreover, at t = 1 they know that at t = 2 they will be accounting for information

already seen. Therefore at t = 1 they try to predict how at t = 2 they will be accounting for
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information already seen. To write the value of information in a way that reflects these effects,

I use the decomposition of first-period agent demand into myopic and hedging parts.

Corollary 3. The value of information can be written as

e2δψ0 =

Var(D3−P2|Fu
2 )

Var(D3−P2|Fu
1
)

Var(D3−P2|F i
2
)

Var(D3−P2|F i
1
)

Var (D3 − P2 − βu(P2 − P1)|F
u
1 )

Var
(

D3 − P2 − βi(P2 − P1)|F i
1

)

Var (P2 − P1|F
u
1 )

Var
(

P2 − P1|F i
1

) . (7)

The value of information is

ψ0 =
1

2δ
log

Var(D3 − P2|F
u
2 )

Var(D3 − P2|F i
2)

−
1

2δ
log

Var(D3 − P2|F
u
1 )

Var(D3 − P2|F i
1)

+
1

2δ
log

Var (D3 − P2 − βu(P2 − P1)|F
u
1 )

Var
(

D3 − P2 − βi(P2 − P1)|F i
1

)

+
1

2δ
log

Var (P2 − P1|F
u
1 )

Var
(

P2 − P1|F i
1

) .

The first two terms measure the value of information coming from second-period returns. In

the first period agents obtain some information about second-period returns from prices. They

are only willing to pay for information they obtain at t = 2 that increments what they already

know. Thus the intertemporal difference of relative variances accounts for past price informa-

tion. In addition, the agents anticipate at t = 1 that at t = 2 they will be accounting for

past information. The value of information coming from how well they can anticipate this is

measured by the third term. If by becoming informed the agents can predict better the future

accounting of past information, they are willing to pay more for information. The last term is

the relative variance of the first-period myopic return. This is the channel where the supply

information effect shows up. Supply fluctuations θ̃2 − θ̃1 determine P2 − P1, so when θ̃2 − θ̃1 is

predictable by θ̃1 how well agents know θ̃1 matters for the value of information. Namely, if by

becoming informed the agents gain in how well they estimate θ̃1, they are willing to pay more

for information.

Finally, I note that if the cost of acquiring information is arbitrarily small, it is always

better to be informed.

Proposition 4 (The Value of Information Is Positive). For λ ∈ [0, 1], ψ0(λ) > 0.

5 Results

5.1 The Informativeness Trade-Off

The dynamic nature of the financial market enters the value of information through the infor-

mativeness of first-period prices P1 about returns D3−P2 and P2−P1. These returns generally

load on both dividends and supply, so prices contain information about them through two dis-

tinct channels. I claim that as the number of informed investors in the market increases, the
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uninformed investors’ estimation of the dividend improves but their estimation of the supply

worsens. Proposition 5 establishes that inference qualities, and thus price informativenesses,

move in opposite directions.

Proposition 5 (Informativeness Trade-Off). Holding σ2µ and σ2θ fixed, Var
(

θ̃1|F
u
1

)

is decreasing

in Var (µ̃|Fu
1 ).

The informativeness trade-off says that if I vary any parameter of the model other than σ2µ

and σ2θ in a way that makes Var (µ̃|Fu
1 ) decrease then Var

(

θ̃1|F
u
1

)

will increase and vice versa.9

For the purposes of the information equilibrium that I have just described the parameter that

I vary is λ. I prove this proposition formally in the appendix whereas here I give an intuitive

explanation. Consider the price signal at t = 1, y1 = qµµ̃ + qθθ̃1. It is a noisy signal of µ̃

because of the presence of θ̃1. It is important to note, however, that the magnitude of noise

in this signal depends on the coefficients qµ and qθ. Moreover, qµ and qθ are functions of the

number of informed investors λ and thus how much noise prices contain depends on λ.

Recall that the information sensitivity qµθ measures how much prices respond to changes in

dividend information. For higher numbers of informed agents prices respond more to changes

in dividend information, because there is more dividend information in the market. In other

words, the magnitude of the ratio qµθ is increasing in λ.

In equilibrium qµ and qθ are known by every investor. Therefore when the uninformed see

y1 they can divide it by qµ and thus glean the quantity

µ̃+
1

qµθ
θ̃1.

If the number of informed investors increases the magnitude of 1/qµθ decreases. Then prices

become a signal of µ̃ with higher precision, because the total noise in price, θ̃1/qµθ, has lower

variance.

At the same time one can think of prices as a noisy signal of stochastic supply. From this

perspective µ̃ is noise with respect to θ̃1. When the uninformed see y1 they can also divide it

by qθ and thus observe the quantity

qµθµ̃+ θ̃1.

Here, if the number of informed investors increases so does the magnitude of qµθ. Therefore

prices become a signal of θ̃1 with lower precision, because the total noise in price, qµθµ̃, has

higher variance.

An alternative way to think about the information trade-off is to look at the amount of

information in prices as a weighted average of dividend information and supply information.

As above, dividing y1 by any constant known in equilibrium does not change the amounts of

9The information trade-off can also be stated in terms of sensitivity of price information. The sensitivity of
price information to supply information is (qµθ)

−1, which is the inverse of the sensitivity of price information
to dividend information. Therefore as prices become more sensitive to dividend information they become less
sensitive to supply information.
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information that it conveys. Dividing y1 by its standard deviation gives

y1
√

Var(y1)
=

qµµ̃+ qθθ̃1
√

q2µσ
2
µ + q2θσ

2
θ

=
qµθσµ

√

q2µθσ
2
µ + σ2θ

µ̃

σµ
+

σθ
√

q2µθσ
2
µ + σ2θ

θ̃1
σθ
.

The standardized information content of prices is a linear combination of two independent

standard normal random variables. Notice that the squares of the coefficients of each standard

normal add up to one. Therefore, each coefficient measures how much weight the amount of

each type of information carries in the overall amount of information contained in prices. This

shows that changes in the economy that increase the amount of dividend information contained

in prices decrease the amount of supply information contained in prices and vice versa.

I plot the inference qualities of mean dividends and supply in figure 4. As the number

of informed investors in the market increases, prices become more informative about mean

dividends and thus Var (µ̃|Fu
1 ) decreases. At the same time Var

(

θ̃1|F
u
1

)

increases, which means

that prices become less informative about supply. Figure 4 also shows that the informativeness

of price about dividends and supply shift in response to changes in the persistence of supply. For

a fixed number of informed investors λ, when ρ decreases the uninformed can predict changes in

supply better. The uninformed then have an informational advantage with respect to supply,

so Var
(

θ̃1|F
u
1

)

must adjust upwards in order to support λ in equilibrium. The information

trade-off then implies that Var
(

µ̃|Fu
1

)

decreases.
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Figure 4: Informativeness of price for dividends and supply at t = 1, 2 for ρ = 0, 0.5, 1 with δ = 1, σζ = 1, σµ = 1, σθ = 0.5
and ση = 0.5.

5.2 Complementarities

Here I highlight why adding another trading period to the economy of Grossman and Stiglitz

(1980) gives complementarities in information acquisition. Complementarities obtain when

the slope of the value of information ψ0(λ) with respect to the number of informed traders

λ is positive. That (5) is a cubic polynomial in λ presents a bottleneck of tractability in
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∂ψ0(λ)/∂λ for arbitrary λ. Nevertheless the value of information is in closed form in moments

of D3 − P2 and P2 − P1, even though these moments are not themselves a closed form of λ.

First I explain the result directly in terms of D3 −P2 and P2 −P1. In section 5.2.1 I prove the

existence of information complementarities when supply is independent over time and I give an

approximation of ∂ψ0(λ)/∂λ for small λ and any ρ.

The information trade-off in µ̃ and θ̃1 creates a similar information trade-off in cash flows

and capital gains. The second-period return is a liquidating capital gain,

D3 − P2 =ζ̃ − pηη̃ + pDµ (µ̃− µ̂1) + pDθ θ̃1 (8)

where I define

pDθ = −ρpθ,

pDµ = pµ̂
Var(µ̃|Fu

2 )

Var(µ̃|Fu
1 )
,

pη = pθ + pµ̂(pµθ − ρqµθ)
Var(µ̃|Fu

2 )

σ2η
.

The first term and the second term on the right-hand side of (8) depend on ζ̃ and η̃, against

which both agents groups are symmetrically uninformed. Therefore any contribution to the

value of information coming from these terms also measures exposure to risk. Higher risk

means that information is more valuable, but at the same time higher risk means that agents

will hold less of the asset. There is also dependence on µ̂1, but this is common information.

Therefore any relative value of information coming purely from information asymmetry is going

to come through the variables µ̃ and θ̃1. How much the supply information matters depends

on the value of ρ. When supply is independent over time the price informativeness of supply

does not matter for D3 − P2.

The first-period myopic return is the capital gain from trade,

P2 − P1 =pηη̃ + pCµ (µ̃− µ̂1) + pCθ θ̃1 (9)

where I define

pCθ = ρpθ − (qθ + qθ̂),

pCµ = (pµθ − ρqµθ)pη + qµθp
C
θ .

Similarly to above, the relative value of information purely due to information asymmetry

about P2 − P1 comes through µ̃ and θ̃1. Again ρ regulates how much but here the effect has

a different direction in ρ. When supply is independent over time the price informativeness of

supply matters strongly, because then the coefficient of θ̃1 is exactly qθ (see proposition 9).

I show the loadings of liquidating capital gains and capital gains from trade on the two
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Figure 5: Return coefficients for ρ = 0, 0.5, 1 with δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and ση = 0.5. Solid curves for ρ = 1,
dash-dotted curves for ρ = 0.5 and dashed curves for ρ = 0.

unknowns in figure 5. In the case of the random walk assumption for supply, ρ = 1, capital

gains from trade do not load at all on supply but liquidating capital gains do.10 As ρ decreases

supply determines liquidating capital gains less but it determines capital gains from trade more.

When supply is independent over time, ρ = 0, capital gains from trade load positively on supply

but liquidating capital gains do not at all. Because capital gains from trade are increasingly

identified with θ̃1 as ρ decreases, any information effects that are more dominant as ρ decreases

are coming from capital gains from trade, not liquidating capital gains.

Furthermore, at t = 1 each agent is mostly concerned with capital gains from trade. This

can be seen from the demand equations, where the myopic part is based only on P2 − P1.

D3 − P2 plays a secondary role for two reasons. Firstly, each agent hedges it out against

P2 − P1. Secondly, whatever agents do to manage the risk in D3 − P2 at t = 1 they get to

correct after they have some more information at t = 2.

In the previous section I established that as λ increases the value of knowing dividend

information decreases but the value of knowing supply information increases. The former effect

10Note that pCµ = 0 when ρ = 1. I explain this pattern and its importance in section 5 below.
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is the standard result of Grossman and Stiglitz (1980). Pushing against this effect is a supply

information effect that works through P2 − P1. As ρ decreases capital gains from trade are

more predictable by θ̃1 because they load more on it. Therefore as ρ decreases the value of

information coming from capital gains from trade becomes an increasing function of λ. The

two effects combine in a way that gives a value of information that is nonmonotonic in λ.

I exhibit this pattern in figure 6, where I plot the value of information for two extreme values

of ρ and one intermediate case: supply is a random walk, ρ = 1, supply is mean-reverting,

ρ = 0.5, and supply is independent of its past, ρ = 0. The remaining parameters of the model

are δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and ση = 0.5. When ρ = 1 the value of information is

decreasing in λ because the dividend information effect dominates. As ρ decreases the supply

information effect starts to become more pronounced. The combination of the two effects gives

a value of information that is increasing for low λ and decreasing for larger λ. For low ρ, when

few informed investors exist in the market returns are mostly determined by noisy stochastic

supply. As more informed investors enter the economy, they start making prices less informative

about supply, pushing the value of information upwards but more informative about dividends,

pushing the value of information downwards. Eventually when λ is large enough the dividend

information effect dominates, twisting the complementarity of low λ into a substitutability for

high λ. Moreover, because the importance of the supply effect in the value of information

increases as ρ decreases, the range of dominance of the supply effect keeps increasing as ρ

decreases. As figure 6 shows, when ρ = 0.5, ψ0(λ) is increasing for λ ≤ 0.06, but when ρ = 0

the value of information is increasing for λ ≤ 0.105, namely for a larger range of λ.
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Figure 6: The value of information for ρ = 0, 0.5, 1 with δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and ση = 0.5. Solid curves
for ρ = 1, dash-dotted curves for ρ = 0.5 and dashed curves for ρ = 0. For ρ = 0, when κ0 = 0.52 there is one interior
equilibrium at λ∗ = 0.04 (empty circle) and another interior equilibrium at λ∗ = 0.17 (filled circle).
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5.2.1 The Slope of the Value of Information

In this section I prove that when supply is independent over time complementarities in infor-

mation acquisition are always present. Moreover, I develop an approximation of the slope of

the value of information in the number of informed investors, ∂ψ0(λ)/∂λ, for arbitrary supply

persistence ρ.

Theorem 2 (Information Complementarities). When supply is independent over time, the

value of information is increasing for small numbers of informed agents,

∂e2δψ0(λ)

∂λ

∣

∣

∣

∣

∣

λ=0

= 2
σ2µ
σ4ζ

1
σ2
ζ

+ δ2σ2η
(

1
σ2
ζ
+σ2µ

+ δ2σ2η

)2 > 0.

This theorem gives the sign of the slope of the value of information at the origin because

e2δψ0(λ) is a positive monotone transformation of ψ0(λ). The intuition is that as informed agents

enter the economy, agents who decide to remain uninformed lose accuracy of supply information.

In addition, although the presence of more informed agents improves the accuracy of public

dividend information, it also implies that whoever remains uninformed must face more traders

with superior information. Overall, uninformed agents lose more from diminished predictability

of supply fluctuations than what they gain from improved dividend information. Therefore,

as more agents become informed the remaining uninformed agents are willing to pay more for

information.

In order to approximate ∂ψ0(λ)/∂λ for arbitrary ρ, I approximate the solution to polynomial

(6) by ignoring terms of order λ2 and higher. Doing so replaces (6) with a linear equation

in λ, which I solve for the first-period information sensitivity qµθ. As the appendix shows,

this approximation is good around λ = 0 and improves as ρ decreases from one. Using this

approximate solution for qµθ, I carry out all the subsequent steps in the calculation of the value

of information as if qµθ was exact. This gives an approximation to the slope of the value of

information which is very good at λ = 0.

Proposition 6 (Approximate Slope of the Value of Information). Within a linear approxima-

tion of the first-period information sensitivity qµθ in λ,

∂e2δψ0(λ)

∂λ

∣

∣

∣

∣

∣

λ=0

≈
2

σ4ζ

1
1

σ2
ζ
+σ2µ

+ δ2σ2η





1
σ2
ζ

+ δ2σ2η

1
σ2
ζ
+σ2µ

+ δ2σ2η
σ2µ − ρ

σ2ζ + σ2µ

σ2ζ
σ2θ



 .

The smaller ρ is, the better the approximation.

Here the adverse effect of increasing ρ on the presence of complementarities is clear. As

supply becomes more persistent, ρ increases and the complementarity in the value of information

for small numbers of informed agents becomes less pronounced. When supply is independent,

ρ = 0, the above approximation is exact.
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5.2.2 Comparative Statics on the Value of Information

Here I explore how the value of information changes in response to changes in ex-ante uncer-

tainty parameters. Figure 7a shows comparative statics with respect to uncertainty in dividend

information. The entire curve of the value of information shifts upward when σµ increases

because information is more valuable when there is higher uncertainty about dividends. But

because prices become more informative about dividends as λ increases, the increase in the

value of information due to higher σµ is smaller for higher λ.

The effect of changes in the residual uncertainty σζ is subject to two opposing forces. On the

one hand, information is more valuable when residual uncertainty is lower because agents who

decide to be informed have access to more accurate dividend information. On the other hand,

lower σζ also makes information less valuable because the informed transmit more accurate

information through prices.11 The former effect dominates when few informed agents exist

because the aggregate amount of information that uninformed agents receive is still small. But

as figure 7b shows, the latter effect becomes more important as the number of informed agents

increases, making the value of information non-monotonic in σζ for high numbers of informed

agents.

When σθ increases information is more valuable because there is higher uncertainty about

first-period supply. At the same time, as I have argued above, complementarities in information

acquisition are present when first-period supply information is valuable. Therefore, as figure

7c verifies, that higher σθ makes first-period supply information more valuable also makes the

complementarity more pronounced.

Finally I show comparative statics with respect to uncertainty in second-period supply ση

in figure 7d. If ση increases information is more valuable because there is higher second-period

supply risk. Here, the complementarity is less pronounced because the first-period supply θ̃1

plays a smaller role in determining capital gains from trade. When ση is really high the returns

are mostly noise: η̃ drowns out the effect of θ̃1 in predicting returns.

5.3 Persistent Supply

Apart from the predictability effects that I describe above I show that complementarities in

information acquisition do not arise under the random-walk assumption for supply. Grossman

and Stiglitz (1980) show that in a one-trading-period CARA-normal economy information ac-

quisition presents only substitutabilities. Thus far I have argued that adding another trading

period introduces complementarities in information acquisition. But what if the two trading

periods were informationally equivalent, in the sense that I could remove one of the two periods

without altering how much agents learn? In this case complementarities would disappear. I

compare the amount of information in each trading period using precisions delivered by the

Kalman filter.

11These two effects are also present in the economy of Grossman and Stiglitz (1980).
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Figure 7: Comparative statics on the value-of-information curve over σµ, σζ , σθ and ση when ρ = 0. Each figure shows the
value of information for high, medium and low levels of a specific uncertainty parameter while holding all other parameters
to the baseline δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and ση = 0.5. Solid curves for high values, dash-dotted curves for medium
values and dashed curves for low values of parameters.

Proposition 7 (Learning in the Market). The increase in precision over time spent in the

financial market is characterized by

1

Var
(

µ̃|Fu
2

) =
1

Var
(

µ̃|Fu
1

) +

(

pµθ − ρqµθ
ση

)2

(10a)

and

p2µθ

Var
(

θ̃2|Fu
2

) =
q2µθ

Var
(

θ̃1|Fu
1

) +

(

pµθ − ρqµθ
ση

)2

. (10b)

As I have shown in the asset-pricing section of the paper when ρ < 1 the learning-adjusted

information sensitivity pµθ − ρqµθ is strictly positive, so this proposition says that how well

the uninformed know dividends and supply increases over time spent in the financial market.

When ρ = 1, however, corollary 2 shows that there is no increase in precision over time. To

26



understand why, notice that the first-period price contains the information

1

qθ
y1 = qµθµ̃+ θ̃1

and the second-period price contains the information

1

pθ
y2 = pµθµ̃+ θ̃1 + η̃.

On the one hand, when ρ = 1, pµθ = qµθ and η̃ is revealed to the uninformed agents at t = 2. As

a result P2 contains the same information about µ̃ and θ̃1 as P1 and therefore the uninformed

learn nothing about µ̃ and θ̃1 at t = 2.12 On the other hand, when ρ < 1, it is the very

presence of η̃ as an additional source of noise at t = 2 that makes P1 and P2 diverse signals

of µ̃ over time, which helps the agent increase his precision at t = 2. But when supply is

a random walk, the first period is informationally redundant. Then the two-trading-period

economy is informationally equivalent to a one-trading period economy, which does not exhibit

complementarities.

Moreover, under the random-walk-supply assumption the supply channel is not present in

ψ0. The value of information depends on supply in two ways. Firstly, as corollary 3 shows,

directly through the relative variance of capital gains from trade. But as the discussion above

shows, when ρ = 1 observing the difference P2 − P1 at t = 2 does not reveal any information

not already known at t = 1. In other words, conditional on first-period information, capital

gains from trade depend only on η̃.13 Consequently the two agent groups are symmetrically

uninformed about P2 − P1 so that the term measuring its relative variance washes out to one.

Secondly, ψ0 depends on supply indirectly through the relative hedging behavior of the

agents. I show the hedging coefficients for different values of ρ in figure 8. The coefficients βj

are negative because the t = 1 return P2 − P1 is negatively correlated with the t = 2 return

D3 − P2. This finding is consistent with Wang (1993) and is line with empirical literature.

The informed agents hedge more because having more precise information makes them more

confident in taking larger offsetting positions against risk. In addition, βi = −1 irrespective of

ρ and λ. This is because the only components of D3 − P2 and P2 − P1 that the informed do

not already know at t = 1 are ζ̃ and η̃. The informed cannot hedge these out because they

are independent of each other and of every other variable in the economy. Changes in ρ and λ

do not influence the distributions of ζ̃ and η̃, therefore such changes do not affect the hedging

behavior of the informed agents. For the uninformed, although changes in ρ and λ do not

matter for the distributions of ζ̃ and η̃, they do matter for the conditionally joint distribution

of µ̃ and θ̃1. But when ρ = 1, conditional on first-period information, P2 − P1 is completely

determined by η̃, so it co-varies with D3−P2 only through η̃. As a result the hedging behavior

12Var(µ̃|Fu
2 ) = Var(µ̃|Fu

1 ) from (10a) and Var(θ̃1|F
u
2 ) = Var(θ̃2|F

u
2 ) − Var(η̃|Fu

2 ) = Var(θ̃1|F
u
1 ) from (10b)

because η̃ is known at t = 2. Note, however, that η̃ is still unknown at t = 1.
13Lemma 5 of the appendix shows that conditional on first-period information, when supply is persistent

P2 − P1 is independent of µ̃ and θ̃1.
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of the uninformed is the same as that of the informed and therefore βu = −1.
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Figure 8: The hedging coefficients βi and βu for ρ = 0, 0.5, 1 with δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and ση = 0.5. Solid
curves for ρ = 1, dash-dotted curves for ρ = 0.5 and dashed curves for ρ = 0. The hedging coefficient of the informed, βi,
is minus one irrespective of ρ. The two coefficients coincide when ρ = 1.

Finally, I establish formally that when supply is extremely persistent information acquisition

presents only substitutabilities.

Proposition 8 (No Complementarities When Supply is a Random Walk). When supply is a

Random Walk, the value of information is

e2δψ0 =

Var(D3−P2|Fu
2
)

Var(D3−P2|Fu
1
)

Var(D3−P2|F i
2
)

Var(D3−P2|F i
1
)

Var (D3 − P1|F
u
1 )

Var
(

D3 − P1|F i
1

) ,

which is always decreasing in the number of informed agents.

The first term on the right-hand side captures informativeness of prices about liquidating

capital gains. The second term is the value of information in an economy starting at t = 1

without a trading period at t = 2. The capital-gains-from-trade information channel has disap-

peared from the value of information and so have the complementarities. But more importantly,

this result obtains only when supply is extremely persistent. For that to happen, the economic

force that causes supply to be persistent must be very strong. Moreover, random-walk supply

implies that in a long economy prices are not stationary even if economic fundamentals are

stationary. Therefore, in the context of information acquisition in dynamic financial markets,

complementarities are not only more economically interesting than substitutabilities, they are

also more plausible.

5.4 Further Results

In this section I explore further properties of the economy. First I compare the value of in-

formation in my model with that in the one-trading-period model of Grossman and Stiglitz

(1980). Consider an economy with a dynamic asset market and suppose supply is independent

28



over time, ρ = 0. Then the amount of liquidity trades is θ̃1 ∼ N (0, σ2θ ) in the first period and

η̃ ∼ N (0, σ2η) in the second period. Consider now an economy with a static asset market where

the amount of liquidity trades is the total amount of liquidity trades arriving over the horizon

of the dynamic asset market, θ̃1+ η̃ ∼ N (0, σ2θ +σ
2
η). One expects that the value of information

would be lower in the economy with a dynamic market. This is because in a dynamic market

the uninformed receive more information by observing longer price series. As figure 9 shows,

however, this is only true for high incidences of informed agents. In contrast, for small numbers

of informed agents, the value of information is higher in the economy with a dynamic market.

As I have argued above, in dynamic markets informed agents can use supply information to ex-

ploit intertemporal liquidity traders. Their superior supply information allows them to do this

better than uninformed agents. Moreover, the less competition for liquidity-trader exploitation

that informed traders face from other informed traders, the better it is to be informed. This

effect is absent from static markets because there is no iteration of trading. This additional

feature of dynamic markets, which is strongest when there are few informed agents, makes

information more valuable in the dynamic scenario than in the static scenario.
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Figure 9: The value of information in a dynamic economy with ρ = 0 and liquidity amounts σ2
θ
= 1 and σ2η = 1 (dashed

blue curve) compared to the value of information in a static economy with liquidity amount σ2
θ
+σ2η (solid red curve). The

remaining parameters are δ = 1, σζ = 1, σµ = 1.

The information complementarity for small numbers of informed agents combined with

the information substitutability for large numbers of informed agents gives more than one

equilibrium in the information market. For example, as figure 6 shows, when ρ = 0 and

κ0 = 0.52 there are two interior equilibria, at λ∗ = 0.04 and λ∗ = 0.17. I compare such

equilibria in terms of risk by examining the ex-ante variance of prices. In figure 10 I plot the

variances Var (P1|F
u
0 ) and Var (P2|F

u
0 ) against the value of information as λ varies from zero

(empty diamonds) to one (filled squares) for ρ = 0, 0.5 and 1. Casual intuition suggests that

larger numbers of smart-money investors would stabilize prices and would therefore reduce

price variance. But as figures 10a and 10b show, that is not necessarily the case. Higher λ does

stabilize prices by making them more informative about dividends. At the same time it also
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makes prices riskier for the uninformed because it makes them less informative about capital

gains from trade. Moreover, as Wang (1993) explains, higher λ creates an adverse environment

for uninformed investors because it means that they have to face more investors with superior

information. The result is that price variance can increase in λ, so that when there are two

interior equilibria the one with the higher λ can exhibit higher risk.

The presence of more than one equilibrium in the information market also has implications

for empirical research. The dynamic model of this study produces a time-series of two price

observations. As I show in figure 11, it is possible that two equilibria of equal informational

value exhibit the same variance for first-period prices but different variances for second-period

prices. In this figure I retrace the price variances of figure 10 for ρ = 0 by increasing the

supply level uncertainty and keeping all other parameters fixed.14 Higher uncertainty of supply

makes prices overall more risky, but more so for smaller λ than for higher λ. This is because

higher numbers of informed agents compensate uninformed agents for losing supply precision

by releasing more accurate dividend information. The overall effect is that price variance is not

monotonic in λ. This, together with that ψ0(λ) is not monotonic in λ either, gives a variance-

versus-value-of-information curve that can cross itself as in figure 11a. In this economy an

observer outside the model would find it reasonable to fit a structural break in prices between

periods one and two, even though inside the model every agent knows which equilibrium is

occurring. This makes the empirical study of asset prices hard because what is a result of

equilibrium multiplicity cannot be distinguished from regime switching.
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Figure 10: Price variances versus the value of information for ρ = 0, 0.5, 1 with δ = 1, σζ = 1, σµ = 1, σθ = 0.5 and
ση = 0.5. Solid curves for ρ = 1, dash-dotted curves for ρ = 0.5 and dashed curves for ρ = 0. Empty diamonds denote
λ = 0 and filled squares denote λ = 1. When κ0 = 0.52 the interior equilibrium with more informed traders (filled circle),
is associated with higher uncertainty than the equilibrium with the fewer informed traders (empty circle).

14An additional difference from figure 10 is that the second-period price variance of 11b is conditional on
first-period information.
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Figure 11: Price variances versus value of information for ρ = 0 with δ = 1, σζ = 1, σµ = 1, σθ = 1.5 and ση = 0.5. Empty
diamonds denote λ = 0 and filled squares denote λ = 1. When κ0 = 0.542 there are two interior equilibria, λ∗ = 0.07 and
λ∗ = 0.52 with equal first-period variance but different second-period variances.

6 The Value of Information in Continuous Time

In this section I address how the information-market equilibrium works in an economy with

more than two periods by deriving the value of information in the limiting case of continuous

time and infinite horizon. A further motivation for this derivation is to connect with existing

literature, namely the asset-pricing study of exogenous asymmetric information of Wang (1993).

I use that model for the financial market and derive the corresponding equilibrium in the

information market. The economy is made up of a continuum of ex-ante identical investors of

total mass one. Every investor has preferences of constant absolute risk aversion with coefficient

δ. Everyone can invest in a safe bond with constant interest rate r and in a risky stock the

dividend process of which is

dDt = φD(µt −Dt)dt+ σDdB
D
t ,

where BD
t is a Brownian motion driving the dividends. The growth rate µt is not freely

observable, but it is known that it follows the process

dµt = φµ(m− µt)dt+ σµdB
µ
t ,

whereBµ
t is a Brownian motion independent of BD

t . In the financial market there are λ informed

agents that observe the full history of µt and 1− λ uninformed agents that rely only on prices

and dividends to infer as well as possible the value of µt. The total stock supply at time t is

1 + θt, where θt is not observable,

dθt = −φθθtdt+ σθdB
θ
t
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and Bθ
t is a Brownian motion independent of Bµ

t and BD
t . In this model Wang (1993) studies

the asset pricing implications of exogenous information asymmetry. I endogenize the fraction λ

of informed agents as a function of information acquisition costs. I begin with a brief description

of the equilibrium in the financial market.

6.1 The Equilibrium in the Financial Market

The equilibrium price process is

Pt = p0 + pDDt + pµµt + pθθt + pµ̂µ̂t + pθ̂θ̂t. (11)

The information that the informed have is the complete history of the dividend Dt, of the price

Pt and of the dividend growth rate µt. Let the σ-algebra F i
t represent this information. The

information Fu
t that the uninformed have at time t is the complete history of the dividend Dt

and the price Pt only. The inferences µ̂t and θ̂t are the best estimates of µt and θt given the

information Fu
t ,

µ̂t = E

[

µt

∣

∣

∣
Fu
t

]

= E

[

µt

∣

∣

∣
{Ds, Ps}0≤s≤t

]

and

θ̂t = E

[

θt

∣

∣

∣
Fu
t

]

= E

[

θt

∣

∣

∣
{Ds, Ps}0≤s≤t

]

.

These estimates are given by a Kalman-Bucy filtering, with steady-state solution

d

(

µ̂t

θ̂t

)

=

(

φµ(m− µ̂t)

−φθθ̂t

)

dt+ h(qxx)
1

2 dB̂t

The filtering innovation B̂t is a two-dimensional vector Brownian motion. The matrices qxx and

h are constants provided in terms of the model parameters in the appendix. These estimates are

also available to the informed agents. Therefore the informed investors observe, either directly

or by inference, all other quantities present in the price process apart from the noisy supply θt.

But they also observe the price, therefore the supply θt is revealed to them fully.

6.1.1 Agent Demand

The demand of each agent group is the solution to a portfolio problem taking the returns in

excess of the risk-free rate, Rt, as given. The excess returns follow the process

dRt = (Dt − rPt)dt+ dPt. (12)

The only quantities that matter for portfolio selection are those that help predict excess returns.

As Wang (1993) shows the state vector for the uninformed can be reduced to the column vector

Sut = (1 θ̂t)
T and the state vector for the informed can be reduced to the column vector

Sit = (1 θt µ̂t−µt)
T . This reduction also gives explicit expressions for pD and pµ+pµ̂. Consider
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now the portfolio problem of an investor in group j for j = i, u. At time t the dollar amount

invested in the stock is Xj
t , the wealth is W j

t and consumption is cjt . Let ν be the discount

factor. The portfolio selection problem is

max
{cjs,X

j
s}t≤s≤∞

E

[
∫ ∞

t
e−νs

(

−e−δc
j
s

)

ds
∣

∣

∣
F j
t

]

s.t. dW j
t =

(

rW j
t − cjt

)

dt+Xj
t dRt

dRt = mj
RS

j
t dt+ vjRdB̂t

dSjt = mj
SS

j
t dt+ vjSdB̂t

wheremj
S , v

j
S,m

j
R and vjR are constant matrices. It is well known that the value function for this

type of problem is separable in time, state variables and wealth. It has the form e−νtJ j(W j
t , S

j
t )

where

J j(W j
t , S

j
t ) = −Aje−rδW

j
t −

1

2
SjT
t γjSj

t .

The constant Aj is scalar and γj is a matrix of constants characterized in the appendix.

6.1.2 Market Clearing

A fraction λ of agents are informed. The informed agents’ demand of the stock is Xi
t = diSit .

Here di is a 1 × 3 row vector that depends on the coefficients of the price process and the

parameters of the economy. Similarly the uninformed agents’ demand of the stock isXu
t = duSut

where du is a 1× 2 row vector. I give di and du in the appendix. The stock market clears when

the aggregate investor demand equals the noisy supply,

λXi
t + (1− λ)Xu

t = 1 + θt.

Matching coefficients in the underlying state variables of the two agent groups gives three

non-linear equations. These pin down the coefficients in the price function in terms of λ.

6.2 The Equilibrium in the Information Market

Next I endogenize the fraction of informed agents by using the same equilibrium concept as in

definition 2, where the financial equilibrium is now a sequence of prices {Pt(λ)}0≤t≤∞ given by

the financial market equilibrium of Wang (1993) that I have just described. Each agent has the

option to subscribe to the full observations of µt at the beginning of time by incurring the cost

κ0. After t = 0 the agents cannot change their information status. The equilibrium number

of informed agents λ∗ is determined in the same way as in discrete time, so here I focus on

describing the derivation of the value of information. The value of information Ψ0(λ) is defined

as

Ju (W0, S
u
0 ;λ) = E

[

J i
(

W0 −Ψ0(λ), S
i
0;λ
)

∣

∣

∣
Fu
0

]
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The calculation of Ψ0(λ) is in closed form in terms of the solution of the portfolio problems and

the price coefficients. Because, however, the price coefficients have to be solved numerically, I

do not have a completely closed form of Ψ0(λ) in terms of the model parameters. Similarly to

section 4, the value of information can be written as

Ψ0(λ) =
1

rδ
log

(

Ju(W0, S
u
0 ;λ)

E
[

J i(W0, S
i
0;λ)|F

u
0

]

)

.

The result of this calculation depends on the uninformed agents’ prior supply estimate, θ̂0. I

set θ̂0 equal to the long-run mean of the θ process, which is zero. This is the same as requiring

that the uninformed prior is specified correctly.
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(a) The value of information in continuous time
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Figure 12: Value of information and asymptotic error variances for φθ = 0.1 and 0.6 with δ = 3, r = 0.05, φD = 0.4,
σD = 1, m = 0.8, φµ = 0.2, σµ = 0.6 and σθ such that σ2

θ
/2φθ = 1. Solid curves for φθ = 0.1 and dashed curves for

φθ = 0.6.

In figure 12 I show the value of information Ψ0(λ) and the associated asymptotic inference
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qualities of dividend forecast and supply. As more informed agents enter the economy prices

become more informative about dividends but less informative about supply, as witnessed by

that AV ar(µt|F
u
t ) decreases in λ and that AV ar(θt|F

u
t ) increases in λ. The question now is,

when do complementarities arise? A calculation based on matching the correlation structure of

an AR(1) process with that of the Ornstein-Uhlenbeck process shows that ρ = e−φθ∆t, where

∆t is the time between consecutive periods of realizations of the AR(1) process. Therefore

complementarities should arise when φθ is high. As the top plot of figure 12 verifies, when φθ

is high, that AV ar(θt|F
u
t ) is increasing in λ makes the value of information non-monotonic in

λ.

Finally let me address the differences between the model in discrete time and the model

in continuous time. One advantage of the two-period model is that I can have an expression

for the value of information in terms of conditional moments of returns. At the time of this

writing, the best available description of the value of information in continuous time is as a

ratio of value functions. Moreover, that the continuous-time model is in steady state does not

allow for the explicit expression of learning-over-time effects which, as evident in proposition 7,

are quite important. But perhaps most importantly, the economic forces of the continuous-time

model are clearly expressed already in the two-period model. This says that the length of the

economy does not matter for the value of information. To gain some intuition about why this

is the case, consider the following argument. Suppose that the economy was in continuous time

but that the world ended at a random date τ . To keep things simple further suppose that τ

was determined by the arrival of a Poisson shock of rate ντ , independently of everything else

in the economy. By a standard exchange-of-integrals argument the objective value function of

each agent group j would be

E

[
∫ τ

t
e−νs

(

−e−δc
j
s

)

ds
∣

∣

∣
F j
t

]

= E

[
∫ ∞

t
e−(ν+ντ )s

(

−e−δc
j
s

)

ds
∣

∣

∣
F j
t

]

.

That is, the only change in the economy is that the discount factor ν has increased by ντ .

But as the appendix shows, the discount factor washes out completely in the expression for

Ψ0(λ). Therefore in this context the length of the economy does not matter for the value of

information.

7 Conclusion

To conclude, supply is valuable information in dynamic financial markets because it captures

information about short-term capital gains. When the persistence of supply is low the level of

supply determines changes in supply and thus supply drives changes in prices. This implies that

uninformed investors use prices to learn information about two quantities, dividend information

and supply. In this joint estimation dividends and supply act as noise with respect to each other.

As a result, changes in the information market make the estimation qualities of dividends and

supply move in opposite directions.
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This trade-off in estimation creates a similar trade-off in informativeness of prices about

dividends and capital gains. As more informed agents enter the economy they make prices

more informative about cash flows, but less informative about short-term changes in prices.

The combination of the two effects gives a value of information that is not monotonic in the

number of informed agents. This phenomenon creates multiple equilibria in the information

market and makes prices fragile in perturbations of information costs.

This price fragility is often interpreted as a source of “structural breaks”, or “regime switch-

ing” in prices. The intuition is that if the information decision was to be repeated over time,

then the multiplicity of equilibria would translate to time-varying moments of prices. In or-

der to argue this point further the iteration of the information decision must be part of the

model. Moreover, in reality markets are dynamic environments. Because asset markets and

information markets interact, if we want to understand either market we must understand in-

tertemporal information acquisition. The dynamic model of this paper provides a foundation

for such studies.
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A Appendix

A.1 Auxiliary Results

Lemma 1. For two σ-algebrae H1 and H2 where H1 is contained in H2 and the normal random variables
Z and W ,

Cov (E [Z|H2] ,E [W |H2] |H1) = Cov (Z,W |H1)− Cov (Z,W |H2) .

Proof. The law of total covariance states that for the random variables X and Y , conditional on the
σ-algebra G,

Cov(X,Y ) = E [Cov(X,Y |G)] + Cov(E[X |G],E[Y |G]).

When X and Y are normal the conditional covariance is constant, therefore applying this to the normal
random variables X = E [Z|H2] and Y = E [W |H2] and the σ-algebra H1 I get

Cov (E [Z|H2] ,E [W |H2] |H1) = Cov(E [Z|H2] ,E [W |H2])− Cov(E [Z|H1] ,E [W |H1])

= Cov (Z,W |H1)− Cov (Z,W |H2)

by the law of iterated expectations and the law of total covariance.

Lemma 2. For two random variables X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) where Cov(X1, X2) = σ12,

E
[

exp{b1X1 + b2X2 + a11X
2
1 + 2a12X1X2 + a22X

2
2}
]

=

1

S
1

2

exp

{

1

S

{

1

2

[

b21
(

σ2
1 − 2a22|Σ|

)

+ 2b1b2 (σ12 + 2a12|Σ|) + b22
(

σ2
2 − 2a11|Σ|

)]

+µ1

[

b1 + 2(a11b2 − a12b1)σ12 + 2(a12b2 − a22b1)σ
2
2

]

+µ2

[

b2 + 2(a12b1 − a11b2)σ
2
1 + 2(a22b1 − a12b2)σ12

]

+µ2
1a11

(

1− 2a22σ
2
2

)

+ 2µ1µ2 (a12 + 2|A|σ12) + µ2
2a22

(

1− 2a11σ
2
1

)

}

}

where

S = |I − 2ΣA| = 1− 2(a11σ
2
1 + 2a12σ12 + a22σ

2
2) + 4|A||Σ|

|A| = a11a22 − a212

|Σ| = σ2
1σ

2
2 − σ2

12

Proof. This is a special case of a standard property of the multivariate normal distribution for two
random variables, see for example Vives (2008) section 10.2.4 and references therein.

A.2 Results on the Model

Kalman Filter (Solution). The first-period inferences of the uninformed are

µ̂1 =
qµθσ

2
µ

q2µθσ
2
µ + σ2

θ

(

qµθµ̃+ θ̃1

)

,

θ̂1 =
σ2
θ

q2µθσ
2
µ + σ2

θ

(

qµθµ̃+ θ̃1

)

.

The first-period inference qualities are

Var (µ̃|Fu
1 ) =

σ2
µσ

2
θ

q2µθσ
2
µ + σ2

θ

,

Cov
(

µ̃, θ̃1|F
u
1

)

= −qµθVar (µ̃|F
u
1 ) ,
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Var
(

θ̃1|F
u
1

)

= q2µθVar (µ̃|F
u
1 ) .

Forecast:

E [µ̃|Fu
1 ] = µ̂1 (µ̃ does not change)

E

[

θ̃2|F
u
1

]

= ρθ̂1

The second-period inferences of the uninformed are

µ̂2 = µ̂1 + (pµθ − ρqµθ)
Var (µ̃|Fu

2 )

σ2
η

[

pµθ(µ̃− µ̂1) + θ̃2 − ρθ̂1
]

,

θ̂2 = ρθ̂1 +

[

Var (µ̃|Fu
2 )

Var (µ̃|Fu
1 )

− ρqµθ(pµθ − ρqµθ)
Var (µ̃|Fu

2 )

σ2
η

]

[

pµθ(µ̃− µ̂1) + θ̃2 − ρθ̂1
]

.

The second-period inference qualities are

Var (µ̃|Fu
2 ) =

Var (µ̃|Fu
1 ) σ

2
η

Var (µ̃|Fu
1 ) (pµθ − ρqµθ)

2 + σ2
η

,

Cov
(

µ̃, θ̃2|F
u
2

)

= −pµθVar (µ̃|F
u
2 ) ,

Var
(

θ̃2|F
u
2

)

= p2µθVar (µ̃|F
u
2 ) .

Proof of Proposition 1. The value function of each agent group j = i, u is

Jj(W0) = max
x
j
1
,x

j
2

{

− e−δW0eδx
j
1
P1E

[

e−δx
j
1
P2+δx

j
2
P2E

[

e−δx
j
2
D3

∣

∣F j
2

]
∣

∣

∣
F j

1

]

}

Define

E2

(

x2;F
j
2

)

= eδx2P2E

[

e−δx2D3

∣

∣F j
2

]

E1

(

x1;F
j
1

)

= eδx1P1E

[

e−δx1P2 min
x
j
2

{

Ej2

(

xj2;F
j
2

)}
∣

∣

∣
F j

1

]

The objective function of the innermost optimization is

E2

(

x2;F
j
2

)

= e−δx2(E[D3|F
j
2 ]−P2)+ 1

2
x2

2
Var(D3|F

j
2),

so the first-order condition gives

xj2
∗
=

E

[

D3|F
j
2

]

− P2

δVar
(

D3|F
j
2

) =
E

[

D3 − P2|F
j
2

]

δVar
(

D3 − P2|F
j
2

) ,

which establishes (i). Plugging the first-order condition back into the value function shows that the
objective function of the outermost optimization is

E1

(

x1;F
j
1

)

= E



e
−δxj

1
(P2−P1)−

E
2[D3−P2|F

j
2]

2Var(D3−P2|F
j
2)

∣

∣

∣

∣

∣

F j
1



 .

To carry out the calculation of this expectation, apply lemma 2 with X1 = P2 − P1 and X2 =
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E

[

D3 − P2|F
j
2

]

conditionally on F j
1 , i.e. with

µ1 = E

[

P2 − P1|F
j
1

]

µ2 = E

[

D3 − P2|F
j
1

]

σ2
1 = Var

(

P2 − P1|F
j
1

)

σ2
2 = Var

(

E[D3 − P2|F
j
2 ]|F

j
1

)

σ12 = Cov
(

P2 − P1,E[D3 − P2|F
j
2 ]|F

j
1

)

and b1 = −δxj1, b2 = 0, a11 = a12 = 0, a22 = − 1

2Var(D3−P2|F
j
2)
. Then |A| = 0 and S = 1 − 2a22σ

2
2 so

that the expectation is

E1

(

x1;F
j
1

)

=
1

S
1

2

exp

{

1

S

{

1

2
δ2x1

2
(

σ2
1 − 2a22|Σ|

)

− δx1
[

(1 − 2a22σ
2
2)µ1 + 2a22σ12µ2

]

+ µ2
2a22

}}

.

The first-order condition at t = 1 gives

xj1
∗
=

(1− 2a22σ
2
2)µ1 + 2a22σ12µ2

δ (σ2
1 − 2a22|Σ|)

=

(

σ2
2 −

1
2a22

)

µ1 − σ12µ2

δ
(

|Σ| − 1
2a22

σ2
1

) .

Using lemma 1 I obtain

σ12 = Cov
(

P2 − P1, D3 − P2|F
j
1

)

,

σ2
2 −

1

2a22
= Var

(

E[D3 − P2|F
j
2 ]|F

j
1

)

+Var
(

D3 − P2|F
j
2

)

= Var
(

D3 − P2|F
j
1

)

,

|Σ| −
1

2a22
σ2
1 = σ2

1

(

σ2
2 −

1

2a22

)

− σ2
12.

Now define

hj =
Cov

(

D3 − P2, P2 − P1

∣

∣

∣
F j

1

)

Var(D3 − P2|F
j
1 )

,

so that the first-order condition at t = 1 becomes

xj1
∗
=

µ1 − hjµ2

δ
(

σ2
1 −

σ2

12

Var(D3−P2|F
j
1
)

) .

Moreover,

σ2
1 −

σ2
12

Var
(

D3 − P2|F
j
1

) = Var
(

P2 − P1|F
j
1

)

− hjCov
(

D3 − P2, P2 − P1

∣

∣

∣
F j

1

)

= Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

which establishes (ii). Finally, define Kj
1 to be the inverse of S, then

Kj
1 =

Var
(

D3 − P2|F
j
2

)

Var
(

D3 − P2|F
j
1

) ,
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which is an implication of lemma 1.

Remark 1.

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

= Var
(

P2 − P1|F
j
1

)

−
(

hj
)2

Var
(

D3 − P2|F
j
1

)

.

Proof of Corollary 1. The result follows by plugging the definition of βj into the first-period demand
decomposition and carrying out the algebra.

Proposition 9 (Equilibrium Prices). In equilibrium, for a fixed fraction of informed investors λ,

(i) The second-period price coefficients are

pµ = λ
Πi2
Π2

pµ̂ = 1− pµ

pθ = −
δ

Π2

p
θ̂
= 0

(ii) The first-period price coefficients are given by

qµ = λ
Πi1
Π1

[

1−
(

1 + hi
)

pµ̂
Var (µ̃|Fu

2 )

Var (µ̃|Fu
1 )

]

qθ = λ
Πi1
Π1

(

1 + hi
)

ρpθ −
δ

Π1

qµ̂ = 1− qµ

q
θ̂
= (1− λ)

Πu1
Π1

(1 + hu) ρpθ

The second-period precisions Πi2, Π
u
2 and Π2, the first-period precisions Πi1, Π

u
1 and Π1 and the hedging

coefficients hi and hu are given in terms of pµθ and qµθ in Lemma 3.

Proof of Propositions 2 and 9. Using second-period optimal demands and equation (1b), matching
coefficients in second-period market clearing gives

Π2pµ = λΠi2 (13a)

Π2pθ = −δ (13b)

Π2pµ̂ = (1 − λ)Πu2 (13c)

p
θ̂
= 0. (13d)

Moreover, note that
pµ + pµ̂ = 1.

This establishes B.(i). Now divide (13a) by (13b) to get

pµθ = −
λΠi2
δ

= −
λ

δσ2
ζ

,

which establishes A.(i). Next, notice that E
[

D3|F i
1

]

= µ̃, E [D3|Fu
1 ] = µ̂1 and that from proposition 7

E
[

P2|F
i
1

]

= p̄µµ̃+ p̄µ̂µ̂1 + ρpθθ̃1
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where

p̄µ = pµ + pµ̂
σ2
µσ

2
θ(pµθ − ρqµθ)

2

σ2
µσ

2
θ(pµθ − ρqµθ)2 + σ2

η(q
2
µθσ

2
µ + σ2

θ)

= pµ + pµ̂(pµθ − ρqµθ)
2Var (µ̃|F

u
2 )

σ2
η

p̄µ̂ = pµ̂
σ2
η(q

2
µθσ

2
µ + σ2

θ)

σ2
µσ

2
θ(pµθ − ρqµθ)2 + σ2

η(q
2
µθσ

2
µ + σ2

θ)
= 1− p̄µ

= pµ̂
Var (µ̃|Fu

2 )

Var (µ̃|Fu
1 )

Using iterated conditional expectations I get

E [P2|F
u
1 ] = µ̂1 + ρpθθ̂1.

The above conditional expectations, first-period optimal demands, equation (1a) and matching coeffi-
cients in first-period market clearing gives

Π1qµ = λΠi1
[(

1 + hi
)

p̄µ − hi
]

(14a)

Π1qθ = λΠi1
(

1 + hi
)

ρpθ − δ (14b)

Π1qµ̂ = λΠi1
(

1 + hi
)

p̄µ̂ + (1− λ)Πu1 (14c)

Π1qθ̂ = (1− λ)Πu1 (1 + hu) ρpθ (14d)

where I note that
qµ + qµ̂ = 1.

The last five equations together with proposition 7 establish B.(ii). Now divide (14a) by (14b) to get

qµθ =
λΠi1

[(

1 + hi
)

p̄µ − hi
]

λΠi1 (1 + hi) ρpθ − δ

Rearranging this and carrying out the algebra gives the polynomial in A.(ii).

Lemma 3 (Auxiliary Quantities in Asset Pricing). The second-period precisions are given by

(

Πi2
)−1

= σ2
ζ

(Πu2 )
−1

= σ2
ζ +Var (µ̃|Fu

2 )

Π2 = λΠi2 + (1− λ)Πu2 .

The first-period precisions are given by

(

Πi1
)−1

=
(

1 + hi
)2
χθ2

2σ2
η + hi

2
σ2
ζ

(Πu1 )
−1

= (1 + hu)
2
χθ2

2σ2
η + hu2σ2

ζ

+ [(1 + hu)χµ − hu]
2
Var (µ̃|Fu

1 ) + (1 + hu)
2
(ρχθ2 + χθ1)

2
Var

(

θ̃1|F
u
1

)

+ 2 [(1 + hu)χµ − hu] (1 + hu) (ρχθ2 + χθ1)Cov
(

µ̃, θ̃1|F
u
1

)

Π1 = λΠi1 + (1− λ)Πu1 .

Here,

hi = −
χθ2

2σ2
η

σ2
ζ + χθ22σ2

η
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hu =
{

− χθ2
2σ2
η + χµ(1− χµ)Var (µ̃|F

u
1 )− (ρχθ2 + χθ1)

2
Var

(

θ̃1|F
u
1

)

+ (1− 2χµ) (ρχθ2 + χθ1)Cov
(

µ̃, θ̃1|F
u
1

)}

×
{

σ2
ζ + χθ2

2σ2
η + (1− χµ)

2Var (µ̃|Fu
1 ) + (ρχθ2 + χθ1)

2
Var

(

θ̃1|F
u
1

)

− 2 (1− χµ) (ρχθ2 + χθ1)Cov
(

µ̃, θ̃1|F
u
1

)}−1

and

χµ = 1− pµ̂
Var (µ̃|Fu

2 )

σ2
µ

ρχθ2 + χθ1 = ρpθ + pµ̂qµθ
Var (µ̃|Fu

2 )

σ2
θ

χθ2 = pθ + pµ̂ (pµθ − ρqµθ)
Var (µ̃|Fu

2 )

σ2
η

.

The error variances and covariances are given in terms of pµθ and qµθ in the solution to the Kalman
Filter above.

Proof. These expressions follow by omitted algebraic manipulations.

Proof of Proposition 3.

(i) A financial market equilibrium exists when equation (5) has a real root. Carrying out the algebra
shows that (5) can be written as

γ3q
3
µθ + γ2q

2
µθ + γ1qµθ + γ0 = 0, (6)

where

γ3 = σ2
µ

(

ρpµθ − δσ2
η

) (

ρ2σ2
θ + σ2

η

)

γ2 =
σ2
θ

σ2
ζ

{

−σ2
ζ (σ

2
η + 3ρ2σ2

θ)p
2
µθ + δσ2

ζσ
2
η

(

σ2
η + ρ (1 + ρ)σ2

θ

)

pµθ − ρσ2
θσ

2
η

}

γ1 =
σ2
µ

σ2
ζ

{

3ρσ2
ζσ

2
µp

3
µθ − 2δρσ2

ησ
2
ζσ

2
µp

2
µθ + σ2

η

(

σ2
µ + ρ

(

σ2
ζ + σ2

µ

))

pµθ − δσ4
η

(

σ2
ζ + σ2

µ

)}

γ0 = −
σ2
θ

σ2
ζ

pµθ
(

pµθ − δσ2
η

) (

σ2
ησ

2
µ + σ2

ζ (σ
2
η + σ2

µp
2
µθ)
)

That is, equation (5) is a cubic polynomial in qµθ, so it always has at least one real root.

(ii) (a) When λ = 0, pµθ = 0 so γ0 = 0 and therefore one of the solutions of (6) is qµθ = 0.

(b) When λ > 0, pµθ < 0 and γ0, γ1, γ2, γ3 < 0. By Descartes’ rule of signs the polynomial in (6)
has no positive roots, but from above it has at least one real root. Therefore that root must
be negative.

(iii) The financial market equilibrium is unique when equation (6) has a unique real root. This is true
when the discriminant of the polynomial in (6), ∆qµθ , is non-positive. The discriminant is

∆qµθ = 18γ3γ2γ1γ0 − 4γ32γ0 + γ22γ
2
1 − 4γ3γ

3
1 − 27γ23γ

2
0 .

Remark 2. A slightly stronger condition for existence and uniqueness is that

3γ3γ1 − γ22 ≥ 0
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because
−27γ23∆

qµθ =
(

2γ32 − 9γ3γ2γ1 + 27γ23γ
2
0

)2
− 4

(

γ22 − 3γ3γ1
)3
.

Proof of Theorem 1. The value of information is

eδψ0(λ) =
E

[

E1 (x
u
1
∗;Fu

1 )
∣

∣

∣
Fu

0

]

E

[

E

[

E1

(

xi1
∗
;F i

1

)

∣

∣

∣
F i

0

] ∣

∣

∣
Fu

0

] =
E

[

E1 (x
u
1
∗;Fu

1 )
∣

∣

∣
Fu

0

]

E

[

E1

(

xi1
∗
;F i

1

)

∣

∣

∣
Fu

0

] ,

where the last equality follows from the law of iterated expectations. I need to calculate two conditional

expectations, which are very similar. For j = i, u, plugging xj1
∗
back into the value function gives

E1

(

xj1
∗
;F j

1

)

=

√

Kj
1 exp

{

−
1

2Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

{

E
2
[

P2 − P1|F
j
1

]

− 2hjE
[

P2 − P1|F
j
1

]

E

[

D3 − P2|F
j
1

]

+
Var

(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

)E
2
[

D3 − P2|F
j
1

]}

}

.

To calculate the conditional expectation of E1

(

xj1
∗
;F j

1

)

, apply lemma 2 for j = i, u with X1 =

E

[

P2 − P1|F
j
1

]

and X2 = E

[

D3 − P2|F
j
1

]

conditionally on Fu
0 . Because ex-ante all random variables

have zero means

µ1 = E

[

E

[

P2 − P1|F
j
1

] ∣

∣

∣
Fu

0

]

= 0

µ2 = E

[

E

[

D3 − P2|F
j
1

] ∣

∣

∣
Fu

0

]

= 0.

Moreover, take

σ2
1 = Var

(

E

[

P2 − P1|F
j
1

] ∣

∣

∣
Fu

0

)

σ2
2 = Var

(

E

[

D3 − P2|F
j
1

]
∣

∣

∣
Fu

0

)

σ12 = Cov
(

E

[

P2 − P1|F
j
1

]

,E
[

D3 − P2|F
j
1

] ∣

∣

∣
Fu

0

)

and

b1 = b2 = 0

a11 = −
1

2Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

a12 = −hja11

a22 =
Var

(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

)a11.
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Then

|A| = a211





Var
(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

) − hj
2



 = −
a11

2Var
(

D3 − P2|F
j
1

)

where the last equality follows from the variance decomposition in remark 1 and as a result

S = 1− 2a11



σ2
1 − 2hjσ12 +

Var
(

P2 − P1|F
j
1

)

Var
(

D3 − P2|F
j
1

)σ2
2



− 2a11
σ2
1σ

2
2 − σ2

12

Var
(

D3 − P2|F
j
1

)

= 1 +
σ2
1 − 2hjσ12 + hj

2
σ2
2

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

) +

(

Var(P2−P1|F
j
1)

Var(D3−P2|F
j
1)

− hj
2
)

σ2
2

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

+
σ2
1σ

2
2 − σ2

12

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

Var
(

D3 − P2|F
j
1

)

=
Var (P2 − P1|F

u
0 )Var (D3 − P2|F

u
0 )

Var
(

P2 − P1 − hj(D3 − P2)|F
j
1

)

Var
(

D3 − P2|F
j
1

) .

The last equality follows from remark 1, the definition of hj and lemma 1. Now define Kju
0 to be the

inverse of S for j = i, u as in the last equation. Finally, the application of lemma 2 gives that the value
of information is

eδψ0(λ) =
E

[

E1 (x
u
1
∗;Fu

1 )
∣

∣

∣
Fu

0

]

E

[

E1

(

xi1
∗
;F i

1

)

∣

∣

∣
Fu

0

] =

√

Ku
1

Ki
1

√

Kuu
0

Kiu
0

=
Var(D3 − P2|Fu

2 )

Var(D3 − P2|F i
2)

Var (P2 − P1 − hu(D3 − P2)|Fu
1 )

Var
(

P2 − P1 − hi(D3 − P2)|F i
1

) .

Proof of Corollary 3. The result follows by writing hj in terms of βj for j = i, u, and carrying out
the algebra in the expression of theorem 1.

Proof of Proposition 4. Lemma 3 yields that hi < hu < 0, thus −
(

hi
)2

< (hu)
2
< 0. More-

over, by lemma 1, Var (D3 − P2|Fu
2 ) > Var

(

D3 − P2|F i
2

)

, Var (D3 − P2|Fu
1 ) > Var

(

D3 − P2|F i
1

)

and

Var (P2 − P1|Fu
1 ) > Var

(

P2 − P1|F i
1

)

. Remark 1 and theorem 1 now imply that ψ0(λ) > 0 for any
λ ∈ [0, 1].

Proof of Proposition 5. Combining the expressions for Var (µ̃|Fu
1 ) and Var

(

θ̃1|Fu
1

)

from the Kalman

filter I get

Var
(

θ̃1|F
u
1

)

= σ2
θ

[

1−
Var (µ̃|Fu

1 )

σ2
µ

]

which shows that Var
(

θ̃1|Fu
1

)

is decreasing in Var (µ̃|Fu
1 ).

Proof of Proposition 6. Ignoring all terms of order λ2 and higher in (6) gives

−
σ2
µ

σ2
ζ

δσ4
η

(

σ2
ζ + σ2

µ

)

qµθ +
σ2
θ

σ2
ζ

δσ4
η

(

σ2
ζ + σ2

µ

)

pµθ = 0,
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the solution to which is qµθ =
σ2

θ

σ2
µ
pµθ. Using this expression, calculating the value of information in

theorem 1 and evaluating its derivative at λ = 0 proves the result. The approximation improves as
ρ decreases because, by inspection of (6), when ρ is smaller the contribution of higher-order terms is
smaller.

Proof of Theorem 2. The result follows by solving (6), calculating the value of information and its
derivative and setting λ = 0 and ρ = 0. The algebraic manipulations are very complex and are thus
omitted.

Proof of Proposition 7. Both parts of the proposition follow from the solution to the Kalman filter
above.

Lemma 4 (Hedging of the Informed Agents). The hedging coefficient of the informed is

βi = −1

Proof.

βi =
Cov

(

D3 − P2, P2 − P1

∣

∣

∣
F i

1

)

Var(P2 − P1|F i
1)

=
Cov
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∣

∣

∣
F i

1

)

Var(P2 − P1|F i
1)

= −1.

because conditional on F i
1, D3 and P2 − P1 are independent by equation (9).

Lemma 5 (Capital Gains Under Persistent Supply). Conditional on first-period information, when
ρ = 1, capital gains from trade are independent of dividend information and supply.

Proof. The result always holds for the informed. For the uninformed,

Cov
(
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∣

∣

∣
Fu

1

)

= pCµVar(µ̃|F
u
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C
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u
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C
θ Var(µ̃|F

u
1 ) = 0
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)
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u
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u
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= −q2µθp
C
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u
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C
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u
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by equation (9) and corollary 2.

Proof of Proposition 8. Lemma 5 establishes that Var(P2 − P1|Fu
1 ) = Var(P2 − P1|F i

1). Moreover,
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)

− q2µθp
D
θ p

C
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=− p2ησ
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by equation (8), equation (9) and corollary 2. This establishes that

Cov
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D3 − P2, P2 − P1

∣
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∣
Fu

1

)

= −Var(P2 − P1|F
u
1 ).

Therefore βu = −1. The expression for the value of information now follows by corollary 3. In particular,
the value of information is

e2δψ0 =
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Consider the first two fractions in this expression. The denominators are constant, because
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D3|F
i
2

)

= σ2
ζ = Var
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D3|F
i
1

)

The numerators are equal,

Var (D3|F
u
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2 ) + σ2
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by corollary 2 and proposition 7. The last term is
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=
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2
η
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where, in addition, pη = pθ by equation (8) and corollary 2. The value of information is

e2δψ0 =

(
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ζ +Var (µ̃|Fu
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ζ

)2
σ2
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2
η

σ2
ζ +Var (µ̃|Fu
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η

where pθ and Var (µ̃|Fu
1 ) are functions of λ. Taking the derivative of e2δψ0 with respect to λ and carrying

out the algebra shows that the value of information is decreasing in λ.

B Continuous-Time Appendix

B.1 The Filtering Problem of the Uninformed Agents

The matrices in the solution of the filtering problem of the uninformed agents are

qxx =

[

p2θσ
2
θ + p2µσ

2
µ 0

0 σ2
D

]

,

and

h =
1

H





1
pθ
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 ,

where

H =
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pµ
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)2

σ2
µ(φθ +G) + σ2

θ (φµ +G)

and

G =

√
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(
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.

B.2 Portfolio Choice

For j = i, u, the value function is

Jj(W j
t , S

j
t ) = −e−rδW

j
t −

1

2 (α
j+SjT

t γjS
j
t ).

αj is the scalar

αj =
1

r
tr
(

γjvjSv
jT
S

)

+ 2
[ν

r
+ ln(r)− 1

]

,
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where γu is a (2 × 2) matrix and γi is a (3× 3) matrix. In particular, for j = i, u, γj is the solution to
the Algebraic Riccati Equation

0 = γ
[

vjRv
jT
R

(

mj
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r

2
I
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R mj

R

]

+
[

vjRv
jT
R

(
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r

2
I
)

−mjT
R vjRv

jT
S

]

γ

+ γvjS

(

vjTR vjR − vjRv
jT
R I
)

vjTS γ +mjT
R mj
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The optimal demand coefficient for j = i, u is the matrix
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.

For uninformed agents,
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[
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p
θ̂

pθ

) ]

+
[

0 (pθ + p
θ̂
)
(

pµ̂ − pµ
p
θ̂

pθ

) ]

mi
S ,

viR =
[

0 pDσD 0
]

+ (pµ + pµ̂)
[

0 0 σµ
]

+
[

0 (pθ + p
θ̂
)
(

pµ̂ − pµ
p
θ̂

pθ

) ]

viS ,

mi
S =





0 0 0
0 −φθ 0
0 0 −φe



 ,

viS =







0 0 0
σθ 0 0

1
H

pµ
pθ
σ2
µσθ(φθ +G) 1

H
σ2
θ

σ2

µφD

σD
− 1
H
σ2
θσµ(φµ +G)






,

where

φe =
1

H

{

(

pµ
pθ

)2

σ2
µφθ(φθ +G) + σ2

θ

[

σ2
µφ

2
D

σ2
D

+ φµ (φµ +G)

]}

.
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