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Abstract

This paper studies the determinants of optimal taxes for wealthy individuals

faced with capital income risk. I develop a model of optimal taxation of capital

income in which wealth and income inequality is a result of capital income shocks

together with frictions in financial markets. I use the model to study optimal taxa-

tion of various types of capital income: capital income from controlled businesses,

outside the business as well as bequests. In presence of risk-return trade-offs, i.e.,

when more productive investments are riskier, I show that it is typically optimal to

have progressive saving taxes. Furthermore, in an intergenerational context, I show

that bequest taxes should be negative. Finally, I study the implications of the model

on long run efficient distribution of wealth. I show that the long-run distribution of

wealth has a fat-tail distribution and compare the efficient tail of the wealth distribu-

tion to the one resulting from an ad-hoc incomplete market model.

Keywords: Optimal taxation of capital, Capital income risk, Progressive taxes, Pareto

Distribution
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1 Introduction

How should the income of the wealthy be taxed? When governments care about redis-
tribution, how much wealth inequality should they allow? The answer to this question
requires taking a stand on the process of wealth accumulation. Much of the optimal
tax theory has tackled this question by using models where households are subject to
idiosyncratic labor income risk and accumulate wealth as buffer against future income
shocks. However, it has been documented that models with idiosyncratic labor income
risk fail to generate a concentration of wealth at the top similar to that observed in the
data. It has also been argued that models with households who are subject to capital
income risk can generate a concentration of wealth similar to that in the data.1 In this
paper, motivated by this insight, I study optimal taxation of capital income and wealth.

I analyze optimal design of tax schedules by developing a model where households
are subject to idiosyncratic capital income risk and private information. The productivity
of investment projects stochastically evolves over time. In particular, investment produc-
tivity has two components, a component that is known by the households in advance and
at the time of investment, and a residual component that is realized once investment is
made.2 The first component of productivity can be interpreted as entrepreneurial ability. I
assume that productivity, investment and consumption are all private information to the
entrepreneur. In such an environment, a planner would want to redistribute resources
across households against productivity and income risk. These redistributive motives
together with private information, leads to a trade-off between incentives to invest and
redistribution as in Mirrlees (1971). So, the approach here can be thought of as a Mir-
rleesian approach to capital accumulation.

In this environment, I first analyze how taxes should be designed to achieve efficiency
and redistribute across households. In particular, I study optimal taxes on different types
of capital income. Second, I show how the developed model can generate long run dis-
tribution of wealth with Pareto tail. Using techniques from probability theory, I provide
a method for calculation of the tail of the long run wealth distribution in the constrained
efficient allocations. This would shed light on the question of what the wealth distribu-
tion should look like and how much wealth inequality should governments allow.

In order to discuss the implications of the model on optimal taxes, one should distin-

1Aiyagari (1994)’s seminal paper is an example with idiosyncratic labor income risk that fails to capture
the concentration of wealth among the wealthy. For successful models with capital income risk, see
Quadrini (2000), Cagetti and De Nardi (2006), and Benhabib et al. (2011).

2This environment nests the models of entrepreneurship in Evans and Jovanovic (1989) and Gentry and
Hubbard (2004).
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guish between three types of capital income: 1. Outside saving: income from saving in a
risk free asset outside of business, 2. Investment or inside saving: income from investing
in the risky project, 3. Bequest: saving for descendants.3

First, as for taxes on outside saving, I show that risk and return trade-off leads to
progressivity. Due to constant return to scale, the planner would like to have the most
productive units produce. However, this comes at a cost above and beyond the resource
cost of investment. In fact, due to unobservability of investment, full insurance is not
achievable and the higher the level of investment, the higher the riskiness of consump-
tion. Hence, as the desired investment level increases it becomes increasingly costly to
provide incentive to invest. This convexity of cost of moral hazard implies that projects
with higher ex-ante return should have higher investment. In other words, even though
the model exhibits constant returns to scale at the individual level, the presence of fric-
tions make it similar to a decreasing return to scale model.

Consequently, due to incentive reasons, more productive households are bearing
higher degree of risk. Hence, absent taxes on outside saving, the households would
like to self insure by investing in a risk-free bond and this demand is higher for more
productive individuals. Therefore, the government should discourage households from
investing outside the business and create higher distortions for more productive house-
holds. Hence, taxes on outside saving should be progressive.

Second, I characterize the determinants of optimal taxes on investment or inside sav-
ing. I provide a formula that relates these taxes to the investment rate and its dependence
on productivities. There are two main forces: 1. Since more productive households are
subject to higher risk, they should face regressive or decreasing marginal rates on inside
saving. 2. Since more productive households are investing more, their average income
is higher and redistributive motives leads to progressive taxes on inside saving. In most
numerical simulations, the forces toward progressivity dominate, i.e., marginal tax rates
on inside saving are increasing with investment productivity. The analysis here shows
that with capital income risk, progressivity of the tax code is the name of the game. A
feature that is to my knowledge novel to this model.

Third, when ideas do not persist across generations, i.e., productivities are stochastic,
bequests should be subsidized. This result is driven by the way saving affects incentive to
invest for future generations. In this model, since consumption is unobservable, higher
transfers lowers the private cost of investment for the household. Hence, an increase in
saving, increases investment by future generations, i.e., saving relaxes future incentive

3This outside saving can be interpreted as a risk-free bond or it could be interpreted as a an index of
stocks of all the firms in the economy.
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constraints. Therefore, it should be subsidized. This is in contrast with labor income
risk models where saving tightens future incentives to work. That is absent saving taxes,
households would like to save and work less hours and therefore saving should be taxed.

Finally, I provide a method to determine the properties of the tail of long-run distri-
bution of wealth. I show that a simple modification of the model can deliver a stationary
distribution for wealth and that this distribution is fat tailed. The main idea behind this
result is the fact that consumption growth across generations is stochastic. This property
together with appropriate borrowing limits for agents imply that a stationary distribu-
tion exists. I show that the tail of the wealth distribution can be calculated using a rather
simple formula in the constrained efficient allocations. The methodology here, therefore,
allows me to study the determinants of the efficient distribution of wealth using simple
formulas.

This paper is a first attempt in the analysis of optimal capital taxation in a model
that can capture reasonable properties of the wealth distribution. As I argue the model
is consistent with a concentration of wealth at the top. In addition, the data on business
ownership and entrepreneurship suggests that capital income risk is an important de-
terminant of wealth inequality at the top. In particular, as noted by Quadrini (2000) and
Gentry and Hubbard (2004), there is a high concentration of business owners at top of
the wealth distribution. They establish that of the top %5 of the wealthiest Americans,
around %70 are business owners. Furthermore, most of the wealthy households’ assets
is held in their business, approximately %41 and therefore subject to significant risk.

Despite this evidence, the literature on capital taxation has widely focused on labor
income heterogeneity as the main driving factor of inequality.4 In this paper, I have
investigated the other extreme where capital income together with frictions in financial
markets is the only determinant of inequality. A developed economy like that of the
United States, should be thought of as comprising of both households whose major risk
in life is labor income risk and ones with significant capital income risk. The analysis
in this paper shows that unlike models of optimal taxation so far, capital income risk
cannot be ignored. It is, thereby, a first step toward better understanding of optimal
taxes at the top of the wealth distribution.

Related Literature. This paper builds on the literature on optimal dynamic taxation

4An exception is Piketty and Saez (2012) who develop a model with accidental bequests and study its
effect on capital taxation. While they argue that accidental bequests are consistent with micro data, they
do not investigate the implications of their model about the distribution of wealth in the economy. One
key difference between the two models is that the model developed in this paper is consistent with the
observation that many people at the top of the wealth distribution hold a high fraction of their wealth in
risky capital. Another exception is Albanesi (2011). However, she does not explore the implications of her
model on wealth distribution.
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(see Golosov et al. (2003), Farhi and Werning (2010a), Golosov et al. (2010) among oth-
ers). This literature has mainly focused on environments with idiosyncratic labor income
risk and their implications about dynamic taxation of various sources of income. In this
paper, I study optimal taxation of various sources of income in a model with capital in-
come risk and show that capital income risk overturns some of the main lessons from the
literature, namely that the intertemporal wedge can be negative as well as progressivity.

My paper is also related to a growing literature on the effect of taxation on en-
trepreneurial behavior. Cagetti and De Nardi (2009) consider the effect of elimination of
estate taxes on wealth accumulation. Kitao (2008) and Panousi (2009) study how changes
in the capital income tax rate affects investment by entrepreneurs . However, none of
these studies considers the optimal taxation of entrepreneurial income. In developing
my model of entrepreneurs, I have relied on their benchmark models while abstracting
from some details for higher tractability.

Albanesi (2011) and Scheuer (2010) are early attempts in studying optimal design
of tax system for entrepreneurs and hence in spirit closer to this paper. Scheuer (2010)
focuses on the decision of entry into entrepreneurship and its implication for differential
treatment of entrepreneurs and workers. Albanesi (2011) is perhaps the closest study to
this. She considers a two period model where the entrepreneurs are ex-ante identical
and invest in risky projects. She shows that it is possible to have negative wedge on ob-
servable risky capital since it relaxes incentive constraint – while the wedge on risk-free
asset is positive in contrast to the negative bequest tax in this paper. Furthermore, she
considers different financing patterns by the firm and optimal taxes on various securities.

An important implication of my paper is the emergence of bequest subsidies when
entrepreneurs are subject to capital income risk. This result is related to a large literature
on optimal capital taxation including Chamley (1986), Judd (1985), Kocherlakota (2005),
and Conesa et al. (2009), among others. In most of these studies the optimal tax rate
on capital income/wealth is positive or zero.5 Exceptions are Farhi and Werning (2008)
and Farhi and Werning (2010b) in which negative marginal tax rates emerge either as a
result of a higher social discount factor or binding enforcement constraints in the future.
In my model, however, bequest subsidies are optimal since they relax future incentive
constraints.

This paper is also related to a body of research that studies power laws in economics,

5Kocherlakota (2005) actually shows that wealth taxes are zero in expectation and hence some time
negative and some time positive. However, that result is specific to a particular implementation and there
are other implementations for which capital income tax rate is equal to the investment wedge and hence
positive; see Werning (2010).
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Champernowne (1953), Simon (1955), Gabaix (1999) and Benhabib et al. (2011).6 It is
specially close in its spirit to Benhabib et al. (2011). They show that in an intergener-
ational model with labor and capital income risk and warm-glow bequest motives, the
long-run distribution of wealth is Pareto at the top with the tail being determined by
the capital income risk only. In my paper, I achieve this via borrowing constraint and a
more powerful technique introduced by Mirek (2011). Moreover, to my knowledge, this
is the first study to characterize properties of the efficient distribution of wealth. Further,
Benhabib et al. (2011)’s analysis relies on a particular market structure. The analysis in
this paper is more powerful in that I can characterize the efficient distribution of wealth.7

Finally, from a technical point of view, parts of the model in this paper contains two
main frictions, a hidden action problem and hidden type problem. In general, this makes
the problem very hard to analyze. However, I use the first order approach, as in Pavan
et al. (2009), to simplify the set of incentive constraints. Since there are two types of
private information, this model shares the same structure as the model in Laffont and
Tirole (1986) who study optimal regulation of a monopolist and more recently Garrett
and Pavan (2010) and Fong (2009).

The paper is organized as follows: in section 2, I develop the main insights about
progressive taxes via a two period model. Section 3, contains the dynamic extension of
the two period model to an overlapping generations model and implications for bequest
taxes. Section 4, discusses the properties of the long-run distribution of wealth. Section
5 concludes.

2 A Two Period Economy

In this section, I focus on a two–period economy in order to establish the main results
of the paper regarding optimal taxation of two main sources of capital income – income
from investments in controlled business and income from investments made outside of
controlled business. Later, in section 3, I show that a fully dynamic extension of the two
period model almost identically leads to the same qualitative results.

Consider a two period economy in which time is given by t = 0, 1. The economy is
populated by a continuum of households.

Technology. Each household is the sole owner of an investment technology or project
that is subject to idiosyncratic risk. In particular, entrepreneurs draw a productivity

6See Gabaix (2009) for an extensive review.
7See also Moll (2012) for an analysis of a model with capital income risk and stochastic death.
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shock, θ ∈ Θ = [θ, θ̄], at t = 0. I assume that θ is distributed according to the cumulative
distribution function F(θ). I also assume that F(·) is differentiable over the interval [θ, θ̄]

and f (θ) = F′(θ). The value of the shock, θ, determines the distribution of returns
to individual investment. If a household with type θ invests k1 in his private project,
the project will yield an output of y ∈ R+ that is distributed according to the c.d.f.
function G(y|θk1) (with p.d.f. given by g(y|θk1)) where G(·|·) is C1 in all of its argument.
Moreover, the mean value of y, given θ and k1 is given by θk1, i.e.,

∫ ȳ
0 yg(y|θk1)dy = θk1.

That is, the production technology exhibits constant return to scale. Notice that this
formulation can be a stand-in for a more general constant return to scale production
function with various inputs (e.g., labor) in addition to capital. Furthermore, for each
type θ and given an investment level k1, the entire distribution of outcomes G (y|θk1)

will be realized at t = 1, i.e., a law of large number holds for all agents of type θ.8

To further simplify the analysis, we make the following assumption:

Assumption 1 The distribution of output at t = 1 is Gamma, i.e., it satisfies9:

y = ε (θk) , ε ∼ Γ(η, η−1), η > 0

This implies that Eε = 1 and that its variance is given by η−1. Moreover, the distribu-
tion of y satisfies

g (y|θk) =
(θk)−1 ηη

Γ (η)
(y (θk)−1)η−1e−ηy(θk)−1

I will refer to the p.d.f. of ε as h (ε) while its c.d.f. is referred to as H (ε). As will
be shown later, the above assumption together with the log-utility assumption below,
implies that optimal consumption in the second period should be linear in income, y.
This will further simplify the analysis in characterizing saving taxes.

Note that the above assumption implies that gk(y|k1,θ)
g(y|k1,θ) or the likelihood ratio is increas-

ing and linear (and hence it satisfies the conditions in see Jewitt (1988) and Rogerson
(1985).)10,

gk (y|k, θ)

g (y|k, θ)
=

1
k

η
[ y

θk
− 1
]

8One way to think about this is to assume that there is a double contiuum of households, i.e., a
continuum of types θ ∈ Θ and there is a contiuum of households for each type θ and the law of large
number holds across all households of a particular type θ.

9Since gamma distributions are invariant to multiplications, the assumption that the mean value for ε
is 1 is a normalization. Given any ε ∼ Γ (η, χ) , θ’s can be rescaled so that the mean values of ε’s is 1.

10Note that in general gk(εθk|θ,k)
g(εθk|θ,k) = − 1

k (εh′ (ε) + h (ε)) .
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Preferences. Households preferences are given by

log(c0) + β log(c1)

where c0 and c1 are consumption of the entrepreneur at each period. Households con-
sume in each period and invest at t = 0. We assume for simplicity that each agent is
endowed with e0 units of consumption good at t = 0.

For this economy, an allocation is given by {c0(θ), c1(θ, ε), k1(θ)}θ∈Θ,ε∈R+
. An alloca-

tion is said to be feasible if it satisfies the following:

∫ θ̄

θ
[c0(θ) + k1(θ)] dF(θ) ≤ e0 (1)∫ θ̄

θ

∫ ȳ

0
c1(θ, ε)dH (ε) dF(θ) ≤

∫ θ̄

θ
θk1(θ)dF(θ) (2)

Throughout the paper, I will focus on a utilitarian planner whose objective is to
maximize the sum of utilities of the households. In the context of the two-period model,
this redistributive planner’s objective is given by∫

Θ
U (θ) dF (θ)

where U (θ) is the utility from allocations {c0 (θ) , c1 (θ, ε)}ε∈R+
.

Friction-less Economy. Before characterizing properties of efficient allocations and
their implications about optimal taxes, it is useful to start by characterizing the properties
of optimal allocations in a frictionless economy, i.e., where there is no private information
about investment, consumption and productivity. Not surprisingly, in absence of private
information, it is efficient to allocate investment to the most productive households, i.e.,
households with θ = θ̄. Note that in the second period, ε shocks cancel each other in the
aggregate and total output in the second period is given by θ̄k where k is the amount of
capital invested at t = 0. Since the social planner has utilitarian objective, resources at
each period are redistributed among everyone equally, i.e., perfect redistribution across
θ’s at t = 0 and perfect insurance with respect to ε’s at t = 1. Due to log-preferences
investment is a constant fraction of total resources in the first period and hence, the
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following allocations are optimal without frictions:

k
(
θ̄
)

=
β

1 + β
e0, k (θ) = 0, θ < θ̄

c0 (θ) =
1

1 + β
e0, ∀θ ∈ Θ

c1 (θ, ε) = θk
(
θ̄
)

, ∀θ ∈ Θ, ε ∈ R+

It is needless to say that the above allocations are not incentive compatible: 1. House-
holds with highest productivity, θ = θ̄, have no incentives to invest – their consumption
is not dependent on how much they invest, 2. Households with θ < θ̄ would like to pre-
tend to be of the highest productivity type, receive the transfer k

(
θ̄
)
+ c0

(
θ̄
)

and invest
nothing.

2.1 Distortions and Policies

It is now useful to make precise the type of policies that are the focus of this paper.
Although, the approach of this paper is to derive optimal policies from properties of
optimal allocations11, it is important to establish how allocations translate into tax func-
tions. The market structure that is the basis of the analysis in this paper focuses on two
types of assets or two types of saving: a risk-free bond and an equity in household’s
own project. I will refer to these as Outside Saving and Inside Saving; Risk free bond is
what the households invest in other household’s businesses (outside of their own) and
equity is what households invest inside their business.

Given this asset structure, the budget constraints for each household is given by

c0 + k1 + b1 ≤ e0

c1 ≤ q−1b1 + εθk1 − T
(

q−1b, εθk1

)
where T is the tax function that jointly depends on capital income outside and inside

the business and q−1 is the risk free rate – q is the price of a risk-free bond. Note that
the partial derivatives of T can be thought of as marginal tax rates. Given this, we define

11This is in line with the New Dynamic Public Finance literature, see Kocherlakota (2010). Diamond
and Saez (2011) refer to this as the mechanism design approach to optimal taxation.
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the following marginal tax rates or wedges:

τS (θ) : u′ (c0 (θ)) = βq−1 (1− τS (θ))
∫

R+

u′ (c1 (θ, ε)) dH (ε) (3)

τK (θ) : u′ (c0 (θ)) = β (1− τK (θ))
∫

R+

u′ (c1 (θ, ε)) θεdH (ε) (4)

I will refer to τS as outside saving wedge and τK as inside saving wedge. If one writes
Euler equation for a consumer facing the above budget constraints, it can be seen that
τS (θ) and τK (θ) are related to the partial derivatives of T. In fact, τS (θ), is a weighted
average of T1, weighted by marginal utilities. A similar property holds for τK (θ) . How-
ever, as I will show later, with log-preferences and ε ∼ Γ, c1 (θ, ε) will be a linear func-
tion of ε and hence, it can be shown that (1− τK (θ)) θε must coincide with the slope
of c1 (θ, ε) with respect to ε. This implies that τK (θ) = T2

(
q−1b (θ) , εθk1 (θ)

)
, i.e., the

marginal tax rate on equity faced by individual θ.
Note that as the above analysis shows, the wedges defined above are not exactly the

marginal tax rates faced by the individuals. One can think of them as distortions faced
by the individuals. Nevertheless, throughout the next sections, I refer to an increasing
pattern in τS (θ)(τK (θ)) as progressive taxes on outside (inside) saving. Hence, through-
out the paper, progressive taxes are equivalent to ’more productive households face higher
distortions’.

Remark 1: In this implementation, I have focused on simple securities, i.e., debt
and equity. One can think of an arbitrary security with dividend process d and define
marginal tax rate for this security as above. Intuitively, securities are taxed based on their
correlations with the idiosyncratic risk faced by the individuals. In particular, a security
with payoffs independent of ε, are qualitatively taxed similar to a risk-free bond.

Remark 2: An underlying assumption in this implementation is that markets for
insurance against shocks to θ’s are absent. Hence the tax code is partially insuring
against the θ shocks as well as ε shocks. Furthermore, the existence of risk-free borrowing
and lending and that different households can take different position implies that there
is partial insurance coming from that market. Finally, note that in this model the need
for taxation is due to redistribution.

2.2 Progressive (Outside) Saving Taxes

This section contains one of the main insights of the paper: that optimal taxes on outside
saving are progressive. To show this, I first establish that there is a trade-off between
return and risk: household with higher rate of return have riskier consumption sched-
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ules. I then show that this property of the optimal allocations translates into progressive
taxes on outside saving. The functional form assumptions, log-preferences and gamma
distribution for shocks, simplify this analysis greatly. In the online appendix, I show
that many of the results presented here hold for more general utility functions and dis-
tributions. Note that, these theoretical results are shown when θ is publicly observed. In
section 2.4, I allow for private ex-ante types and discuss the implications of the model.

Information. Throughout the paper, I assume that consumption and investment
decision of the individual as well as his ex-post productivity shock, ε, is privately by
the individual only. An outside can observe income y = εθk1. Throughout the paper, I
discuss cases where θ is known publicly as well as privately. I also assume that, funds
allocated to investment and consumption are interchangeable at rate ρ. That is the funds
that are allocated to investment by the mechanism designer, can be diverted to individual
consumption at rate ρ. Given this information structure and under the assumption that
θ is publicly observed, an allocation is said to be incentive compatible if12

log (c0 (θ)) + β
∫

log (c1 (θ, ε)) h (ε) dε ≥ (5)

max
k̂

log
(

c0 (θ) + ρ
(

k1 (θ)− k̂
))

+ β
∫

log

(
c1

(
θ,

εk̂
k1 (θ)

))
h (ε) dε

The above constraint is worth interpreting. Note that in this model, the planner makes
a transfer, c0 (θ) + k1 (θ), in the first period together with a promise of delivering certain
schedule of consumption as a function of ε. The household receives the transfers in
the first period and choose an investment level k̂ resulting into consumption of c0 (θ) +

ρ
(

k1 (θ)− k̂
)

. The planner on the presumption that the agent has chosen the suggested

investment level and based on observing εk̂, imputes a value of ε, εk̂
k1(θ)

, and provides the
associated transfer. This determines the deviation value for the household.

It should be noted that, this specification of the friction, i.e., moral hazard, satisfies
the conditions for the first order approach described in Jewitt (1988) and Rogerson (1985).
The thrust of the first order approach is that the above incentive compatibility constraint

12A more familiar version of incentive compatibility can be written when allocations in the second
period depend on income, i.e., ĉ1 (θ, y), as opposed to ε. In this case, incentive compatibility is given by

log (c0 (θ)) + β
∫

log (c1 (θ, y)) dG (y|θ, k1 (θ)) ≥

max
k̂

log
(

c0 (θ) + k1 (θ)− k̂
)
+ β

∫
log (c1 (θ, y)) dG

(
y|θ, k̂

)
It can be easily shown that the two formulations are equivalent. For illustrative reasons, I use the formu-
lation in the text.
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can be viewed as a maximization problem and hence it can be replaced by its first order
condition with respect to k̂.13 Hence, we can replace the above maximization with its
first order condition with respect to k̂ evaluated at k1 (θ):

ρ

c0 (θ)
= β

∫
log (c1 (θ, ε))

1
k1 (θ)

(
−h (ε)− εh′ (ε)

)
dε (6)

Note that when ρ = 0, the optimal allocation in the frictionless economy satisfies the
above. Hence, it is incentive compatible – ρ = 0 means that the households cannot
divert funds from investment to consumption and hence there is no friction.

Given this simplification, the planning problem is given by

max
c0(θ),c1(θ,y),k1(θ)

∫ θ̄

θ

[
log(c0(θ)) + β

∫ ȳ

0
log(c1(θ, ε))h(ε)dε

]
dF(θ) (7)

subject to (6), (1), and (2). In what follows, I characterize the solution of the above
planning problem and its implications about taxes.

I start the characterization of optimal allocation by studying how provision of efficient
incentives at the individual level are balanced with redistribution. The following lemma
is the first step in this analysis:

Lemma 1 The solution to (7) satisfies the following:

1. Consumption at t = 1 is linear in ε, i.e., c1 (θ, ε) = γ (θ) + ζ (θ) (ε− 1), for some
φ (θ) , ζ (θ) > 0,

2. Average consumption at t = 1 is equated across types, i.e.,
∫ ∞

0 c1 (θ, ε) h (ε) dε = γ (θ) =

β/λ1, ∀θ ∈ Θ where λ1 is the multiplier associated with (2).

The proof can be found in the appendix.
The first part of the above lemma, establishes how incentives are provided. In fact,

in order for households to undertake any investment, consumption schedule should be
increasing in ε. That this schedule is linear is a direct consequence of log-preferences and
gamma distribution. In general, as noted by Hölmstrom (1979), the inverse of marginal
utility is linear in likelihood ratio gk

g = −1− εh′(ε)
h(ε) . When ε ∼ Γ, the likelihood ratio is

linear and inverse of marginal utility is the identity function and hence, the above result

13As shown by Jewitt (1988), the first order approach is sufficient in moral hazard problems when: 1)∫ y
0 G(ŷ|θk)dŷ convex and decreasing in k, 2)

∫
ydG(y|θk) is concave and increasing in k, 3) hazard ratio gk

g

is increasing and concave in y, 4) u
(
(u′)−1 (1/z)

)
is concave, all of which are satisfied in this environment.
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follows. The second part of lemma 7, illustrates how redistribution is done with observ-
able θ. In fact the planner cannot equate consumption across all states and households
but average consumption across all types can be equated. Note that a higher value of
ζ (θ) is associated with more risk in consumption and less insurance.

Required Risk. The above characterization together with the incentive compatibility
constraint (6) allows me to define the concept of required risk. This is the level of riskiness
in consumption, ζ, that is required to sustain a certain level of t = 0 consumption, c0,
and investment, k1. Note that the incentive constraint (6) can be written as

ρ
k1 (θ)

c0 (θ)
= β

∫
log
(

βλ−1
1 + ζ (θ) (ε− 1)

) (
−h (ε)− εh′ (ε)

)
dε

Given a value for λ1, we can write the above as

ζ (θ) = Ψ
(

ρ
k1 (θ)

c0 (θ)

)
(8)

where Ψ is an increasing function; a higher value of investment requires a higher de-
gree of riskiness and a higher value of consumption implies a lower marginal cost of
investment for household and hence a lower value of required risk.

The existence of required risk implies that there is an extra benefit to an infinitesimal
increase in c0. This comes from the fact that an increase in c0 decreases the required
risk and hence increases expected utility in the second period. Equivalently, required
risk induces an extra cost to an infinitesimal increase in k1. Figure 1, describes the
determination of c0 and k1. The curve A-B represents the relationship between c0 and
k1 associated with optimal choice of c0– first order condition associated with c0. This
relationship is independent of θ. The curve O-C represents the optimality condition for
k1. Note that an increase in θ shifts this curve downward due to the increase in rate
of return on investment. This figure establishes that both consumption and investment
are increasing in θ. Intuitively, the planner would like to have investment to be done
completely by the more productive type. However, this comes at a cost of riskiness in
consumption in the second period. Equating the marginal cost of an increase in required
risk to the rate of return on investment implies that investment should be higher for
higher types.

The following proposition establishes that in addition to c0 (θ), k1 (θ), the required
risk, ζ (θ), is also increasing:

Theorem 1 Suppose that q is the intertemporal price of consumption. Furthermore, suppose that
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Figure 1: Determination of consumption and investment at t = 1

qθ̄ − 1 < x̄ where x̄ = ρ min0≤x≤ 1
η

[
1
x + βηe

1
x−1( 1

x − η)ηΓ
(
−η, 1

x − η
)]−1

, where Γ (·, ·) is

the incomplete gamma function. Then c0 (θ), k1 (θ), ζ (θ), as well as investment rate, k1(θ)
c0(θ)

, are
increasing functions of θ. Furthermore, k (θ) = 0 for all θ ∈ [θ, 1/q].

Proof can be found in the appendix.
The above proposition, establishes the risk-return trade-off: households with higher

average productivity have to bear more risk in their second period consumption. This
risk-return trade-off is endogenously determined by the extent of the moral hazard prob-
lem. In other words, although at the household level, the model satisfies constant returns
to scale, due to the presence of moral hazard, it behaves similar to a model with decreas-
ing returns to scale, e.g., Lucas (1978)’s span of control model. In fact, in this model,
span of control by the household is endogenously derived from the underlying friction –
that investment is unobservable by outsiders.

It is almost immediate from Theorem 1 that outside saving wedge should increase
with θ. To see this, note that definition (3) for log-preferences can be written as

1
1− τS (θ)

= βq−1c0 (θ)
∫ ∞

0

h (ε)
λ1 + ζ (θ) (ε− 1)

dε

As shown by above formula, τS (θ) depends positively on first period consumption and
expected marginal utility. From Theorem 1, c0 (θ), ζ (θ) are increasing in θ. This implies
that the expected marginal utility is increasing in θ – it is another measure of riskiness in
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household’s portfolio and hence it increases with risk, ζ. Hence, τS must be increasing
in θ. We summarize this in the following Corollary. A formal proof is left for appendix.

Corollary 1 Suppose that θ̄ satisfies the condition in Theorem 1. Then τS (θ) as defined in (3)
must be increasing in θ.

The mechanism leading to progressive taxes on outside saving is worth further dis-
cussion. Intuitively, since more productive types are required to have a riskier con-
sumption, absent progressive taxes on outside saving, they would like to decrease their
investment and self-insure using outside risk free saving. Progressive taxes ensure that
this does not happen and efficient level of investment is achieved.

Remark 3: The above intuition suggests that a version of this result for a more general
class of utility functions and distribution of shocks must hold. In the online appendix, I
show that in fact this is true. Hence it is natural to say that risk-return trade-offs in this
model leads to progressive taxes on saving.

Remark 4: So far, I have assumed that θ is publicly observable. While I discuss the
case with privately known θ in section 2.4, it is perhaps worth discussing the incentives
for truth-full reporting given the above efficient allocation. Note that in this model,
average continuation utility is decreasing in θ – due to higher risk in consumption.
However, first period consumption as well as investment are increasing in θ. Hence,
when θ’s are private and households face the above mechanism, it is not clear whether
households would like to lie upward or downward. However, we can characterize the
incentives for optimal reporting strategy. When an agent of type θ pretends to be θ̂ the
utility attained by that agent is given by

U
(
θ̂, θ
)
= max log

(
c0
(
θ̂
)
+ ρ

(
k1
(
θ̂
)
− k̂
))

+ β
∫

log

(
c1

(
θ̂, ε

θk̂
θ̂k1
(
θ̂
))) dH (ε)

Using the envelope theorem and after some manipulations, we can show that

∂

∂θ̂
U (θ, θ) =

d
dθ

(
k1 (θ)

c0 (θ)

)
+

∂

∂θ̂
log

(
c0
(
θ̂
)
+ k1

(
θ̂
) (

1− θ̂

θ

))∣∣∣∣∣
θ̂=θ

The above derivative represents the household’s local incentive for lying. The first term
above, the investment rate, is increasing in θ, following proposition 1. Hence, the sign
of the above is positive, if c0

(
θ̂
)
+ ρk1

(
θ̂
) (

1− θ̂
θ

)
is increasing, i.e., when lying upward,

utility in the first period increases. It turns out that in most simulations, this term is
positive. Hence, facing the above mechanism, households would like to pretend to be
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of higher productivity. Through this strategy, they would receive a higher transfer for
consumption and investment at t = 0. Given that investment is privately known, they
can reduce investment in order to reduce the riskiness of consumption in the second
period.

2.3 Taxes on Inside Saving

In this section, I discuss the implications of the model on optimal taxation of inside
capital or equity. I provide a formula that points to major determinants of taxes on
inside capital and discuss the role of its ingredients.

To do so, first note that in the analysis above, since c1 (θ, ε) is linear with slope ζ (θ):

τK (θ) = 1− ζ (θ)

θk1 (θ)

As the above definition shows, how the inside wedge changes with θ depends on how
ζ (θ) and k1 (θ) change as a function of θ. After further simplification, the following
holds:

Lemma 2 The solution to the problem (7) satisfies the following:

τK (θ) = 1− 1
η

β

q
qθ − 1

θ

c0 (θ)

ρk1 (θ)
(9)

Proof can found in the appendix.
As it can be seen, similar to the saving taxes, the major determinant of the shape of

τK (θ) is the investment rate k1(θ)
c0(θ)

and its dependence on θ. In particular, when k1(θ)
c0(θ)

is

increasing in θ, the above formula points toward two effects. The term qθ−1
θ is increas-

ing which cause a decrease in τK (θ) while the rest of the terms are decreasing, which
causes an increase in τK (θ). Hence, the exact sign of d

dθ τK (θ) depends on which one
of these effects dominates. Intuitively, higher investment rates by higher types implies
that they should bear more risk and hence keep more of their income. At the same time,
higher investment implies that the average income for them is higher and hence redis-
tribution leads to higher taxes. For most simulations the latter dominates, hence taxes
are progressive.
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2.4 Unobservable Ex-ante Productivity

Here, I briefly discuss the implications of the model when θ is only privately observed by
the households. In this case, in general it is hard to characterize properties of allocations.
However, I provide some partial characterization of optimal allocations.

When θ is privately observed by the individuals, incentive compatible allocations are
given by

log(c0(θ)) + β
∫ ∞

0
log(c1(θ, ε))h (ε) dε (10)

≥ max
θ̂,k̂

log
(

c0(θ̂) + k1(θ̂)− k̂
)
+ β

∫ ∞

0
log(c1(θ̂,

εθk̂
θ̂k1
(
θ̂
) ))h (ε) dε

The RHS of the above inequality is the utility that a type θ receives when he reports θ̂ and
invests k̂. The first order approach can be employed to simplify the planning problem.

When θ is private information, progressivity of saving taxes becomes harder to estab-
lish. However, it is possible to establish results that are similar to the previous results.
In particular, the following lemma holds regarding the extent of redistribution and pro-
vision of incentives:

Lemma 3 The solution to the planning problem with private θ satisfies the following:

1. Consumption at t = 1 is linear in ε, i.e., c1 (θ, ε) = γ (θ) + ζ (θ) (ε− 1), for some
γ (θ) , ζ (θ) > 0,

2. Average consumption at t = 1 is in general NOT equated across types, i.e.,
∫

c1 (θ, ε) dH (ε) =

γ (θ) is not constant.

Note that as before incentives for efficient investment are provided using linear con-
sumption schedule. However, since θ is unobservable, the extent of redistribution is
lower, i.e., average consumption is not equated across types. In fact, in most simulations,
average consumption is decreasing in order to prevent the low types from pretending to
be of high type. This property of efficient allocations under private information, makes
it hard to show progressivity. However, it is possible to provide sufficient conditions so
that progressivity holds. In fact, as long as investment ratio, k1(θ)

c0(θ)
, is increasing in θ, it

can be shown that saving taxes are increasing:

Proposition 1 Suppose that in the solution to the planning problem with private θ, investment-
consumption ratio, k1(θ)

c0(θ)
, is increasing in θ. Then the implied outside saving wedge, τPI

S (θ), is
increasing in θ.
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Proof can be found in the appendix.
We can provide further characterization of the saving wedge when θ is private infor-

mation. In fact, as it is common in models with hidden types, local incentive constraint
are not binding for extreme values of θ. This implies that the distortion to saving is equal
to saving distortions when θ is publicly observable. So we have the following corollary:

Corollary 2 Consider the solution to the planning problem with private θ and its implied saving
wedge, τPI

S (θ). Then τPI
S (θ) = τFI

S (θ) for θ = θ, θ̄, where τFI
S (θ) is the implied saving wedge

with observable θ. Furthermore, τPI
S
(
θ̄
)
> τPI

S (θ).

2.4.1 Numerical Example

In order to shed more light on mechanisms at play as well as the shape of tax schedule
on inside saving, I provide a numerical example.14 Figure 2, shows the saving wedge as
a function of θ as well as its relation to the saving wedge with full information about θ.
Note that the saving wedge with private information is almost the same as the one with
observable θ. Obviously this depends on the distribution of θ’s. However, it points to an
important observation that in the model with observable θ’s, households incentive for
lying is not that strong and hence the differences between the two models are small.

Finally, Figure 3 shows τK (θ). This figure shows that the income tax schedule with
respect to income from the business is progressive, i.e., increasing with respect to aver-
age productivity or average income. Note that this is true despite the fact that ζ (θ) is
increasing in θ. The figure also establishes that perhaps a progressive tax on total capital
income – the sum of income from business and outside business, almost implements the
optimal allocation since both tax τS (θ) and τK (θ) are increasing in θ and are close in
numbers.

3 A Dynamic Extension

The two period model, although informative about optimal taxes on capital income, is
short of a full analysis of optimal capital taxes. In particular, any relevant model of
optimal capital taxes should be consistent with dynamics of wealth and its distribution
in the economy. In this section, I develop a fully dynamic model of optimal capital

14I solve a cost minimization problem instead of utility maximization problem. Furthermore, we assume
that θ is uniformly distributed so that the average return on investment varies from 3% to 50%. The other
parameter values are q = β = 0.95, ρ = 1, and λ– the multiplier associated with promise keeping
constraint, is set to 1. Note that the problem is homogenous in λ or the promise utility w.I will discuss
this in more detail in section 3.
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Figure 2: Saving Wedge with Public and Private Productivity
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taxes based on the two period economy described above. The model developed, satisfies
diminishing returns in the aggregate, constant returns at the individual level as well as
bequest motives via altruism. I will discuss the models implication on optimal estate
taxes. Later in section 4, I discuss the implication of the model on optimal distribution
of wealth.

The basic model is an overlapping generations extension of the two period model.
Time is discrete, t = 0, 1, · · · . At each period t, a continuum of households are born,
indexed by i ∈ [0, 1]. They live for two periods, t and t + 1. At t they are endowed with
a unit of labor in each period, which they supply inelastically to perfectly competitive
markets.

When young at period t, households are endowed with a technology that transforms
period t-consumption and labor input into period (t + 1)-consumption. That is, each
household at date t is endowed with a production function

yit+1 = (Ait+1kit+1)
αl1−α

it+1

where kit+1 is the amount of capital invested at t, lit+1 is the amount of labor hired
at t + 1 and Ait+1 is productivity. Similar to the two period model, Ait+1 = θitεit+1

where θit is known at t, when household i is deciding about how much to invest and
εit+1 will be realized at t + 1. The ex-ante productivity is drawn from a distribution
F (θ)(θ ∈ Θ =

[
θ, θ̄
]
) and εit+1 is distributed according to a cumulative distribution

function, H (ε). Throughout the paper, I refer to the distribution of yt+1 induced by
θt, kt+1 and lt+1 as Ĝ (y|θt, kt+1, lt+1). Both θt and εt+1 are i.i.d. In order to produce,
households hire labor from competitive labor market. At t, households decide how
much to consume versus to invest in the technology.15

When old at period t + 1, households collect revenue from production less of wages
paid to labor, consume and leave bequests. Hence a household born at t, consumes c0,t

at t and c1,t at t + 1. It determines how much capital to purchase with wealth inherited
from their parents, kt+1, at t and determines how much labor to employ. A household
born at t has the following utility function:

Vt = Et
[
u (c0,t) + βu (c1,t) + β̂Vt+2

]
15Note that there are two ways to interpret this model. One is that capital fully depreciates across

periods and yit is the output produced at t. Another interpretation is that yit is the value of output
produced at t plus the depreciated value of capital. The basic assumption, under this interpretation, is
that an outsider cannot distinguish changes in the value of physical capital from revenue generated from
it.
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where

u (c) =

{
c1−σ

1−σ σ 6= 1
log c σ = 1

and Vt is the utility of a household born at t.
Given this environment, an allocation is given by{

c0,t(θ
t, yt−1), c1,t(θ

t, yt), kt+1

(
θt, yt−1

)
, lt+1

(
θt, yt)}

t∈N∪{0}

where

θt = (θt, θt−2, θt−4, · · · , θt mod 2)

yt−1 =
(

yt−1, yt−3, · · · , y(t−1)mod 2

)
are the histories of shocks for a household born at t. Moreover, µ0,t

(
θt, yt−1) is the distri-

bution of histories for the young generation at t and µ1,t−1

(
θt−1, yt

)
is the distribution

of histories for the old generation at t. We call an allocation feasible if

∫
Θd(t+1)/2e×R

dt/2e
+

[
c0,t

(
θt, yt−1

)
+ kt+1

(
θt, εt−1

)]
dµ0,t

(
θt, yt−1

)
(11)

+
∫

Θdt/2e×R
d(t−1)/2e
+

c1,t−1

(
θt−1, yt

)
dµ1,t−1

(
θt−1, yt

)
≤
∫

Θdt/2e×R
d(t−1)/2e
+

ytdµ1,t−1

(
θt−1, yt

)
∫

Θdt/2e×R
d(t−1)/2e
+

lt
(

θt−1, yt−1
)

dµ1,t−1

(
θt−1, yt

)
= 1 (12)

where µ0,t and µ1,t−1 are the measure of histories induced by the history of investment
and hiring kt, lt.

Information. Throughout this section, I assume that the agent privately observes
εt+1 as well as investment and consumption. The planner can observe the output
from the project, ex-ante productivity16 θt as well as labor input and total transfers{

τ0,t
(
θt, yt−1) , τ1,t

(
θt, yt+1)} – used for consumption and investment, to the house-

holds. Hence given a transfer scheme τt

(
θt−2, yt−1

)
=
{

ττ,τ
(
θτ, yτ−1) , ττ,τ+1

(
θτ, yτ+1)}

τ≥t,

16For a discussion of results with θt private, I refer the readers to the online appendix.
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each agent solves the following:

Vt

(
τt

(
θt−2, yt−1

))
= max

c0,t,c1,t,kt+1,lt+1

∫
Θ×R+

[u (c0,t) + βu (c1,t)

+β̂Vt+2

(
τt+2

(
θt−1, θt, yt+1

))]
dF (θt) dĜ (yt+1|θt, kt+1, lt+1)

subject to

c0,t (θt) + kt+1 (θt) = τ0,t (θt)

c1,t (θt, yt+1) = τ1,t (θt, yt+1)

where in the above budget constraints, I have suppressed the history of shocks prior to
t.

An allocation {c0,t, c1,t, kt+1, lt+1} is said to be incentive compatible, if it is a solution
to the above problem for appropriate transfer values.

I assume that a planner evaluates allocation according to the following welfare func-
tion:

V0 + δV1 (13)

that is the planner cares about the welfare of the first two generations for some value
of δ > 0. This welfare criterion, although time-inconsistent, implies that the planning
problem can be simplified significantly, as we show in what follows.

We call an allocation incentive efficient if it maximizes the above objective, it is feasi-
ble and incentive compatible.

Labor Demand. Before starting to characterize incentive efficient allocations, I dis-
cuss labor demand by firms. Note that since labor input is hired at the spot and is
observable by the planner, we can write the output by the production unit as

yt = ŷtl1−α
t

and write all the allocations in terms of histories of ŷt as opposed to yt– one can think
of ŷt as labor productivity. Using this modification, the return to lt from planner’s point
of view is (1− α) ŷtl−α

t for each individual production unit with labor productivity ŷt.
Hence it should be equated to its cost which is the same for all entrepreneurs – it is equal
to the ratio of the Lagrange multiplier on 12 to 11. Hence,

(1− α) ŷtl−α
t = pt (14)
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where pt is the same for all households. Replacing the labor demand in the production
function, we will have

yt =

(
1− α

pt

) 1−α
α

ŷ
1
α
t =

(
1− α

pt

) 1−α
α

Atkt

= κtεtθtkt

and hence production is linear in k. We denote the distribution of yt+1 induced by kt+1

and θt, G(yt+1|kt+1, θt).
Recursive Formulation and Incentive Compatibility. In our setup, since shocks are

i.i.d., promise utility is a sufficient statistic to keep track of history for each individual.
In particular, for any agent born at t, ex-ante utility is given by

wt

(
θt−2, yt−1

)
=
∫

Θ×R+

[
u (c0,t) + βu (c1,t) + β̂wt+2

(
θt, yt+1

)]
dF (θt) dG (yt|θt, kt+1)

Given this definition, incentive compatibility can be written as the following

Ut

(
θt, yt−1

)
= u (c0,t (θt)) +

∫
R+

[βu (c1,t (θt, yt+1)) + β̂wt+1 (θt, yt+1)]dG (yt|θt, kt+1) ≥

max
k̂

u
(

c0,t
(
θ̂
)
+ kt+1

(
θ̂
)
− k̂
)
+
∫

R+

[βu
(
c1,t
(
θ̂, yt+1

))
+ β̂wt+1

(
θ̂, yt+1

)
]dG

(
yt|θt, k̂

)
where history before t is suppressed for easier notation. As before, we focus on local
incentive constraints:

u′ (c0,t) =
∫

R+

[βu (c1,t (θt, yt+1)) + β̂wt+1 (θt, yt+1)]gk (yt|θt, kt+1) dyt

Given the above simplification of the incentive compatibility constraint, instead of focus-
ing on a welfare maximization problem, we focus on minimizing the cost of providing
certain level of utility to households. We also focus on the component planning problem
of providing a certain level of utility to an agent with a certain history. This component
planning problem can be written as

Pt (w) = max
c0,c1,k,w′,U

∫
Θ
[αqtκt+1θk (θ)− c0 (θ)− k (θ) + pt (15)

+qt

∫ ∞

0

[
−c1 (θ, y) + qt+1Pt+2

(
w′ (θ, y)

)]
dG (y|θ, k (θ)) dF (θ)
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subject to ∫
U (θ) dF (θ) = w (16)

u (c0 (θ)) +
∫ [

βu (c1 (θ, y)) + β̂w′ (θ, y)
]

dG (y|θ, k (θ)) = U (θ) (17)∫ ∞

0

[
βu (c1 (θ, y)) + β̂w′ (θ, y)

]
gk (y|k (θ) , θ) dy = u′ (c0 (θ)) (18)

where qt is the intertemporal price of consumption.
An allocation is incentive efficient if for a sequence {qt, κt} it is the solution to the

above sequence of problems given a w0 and w1 as well as (14). Furthermore, qt, κt as well
as w0 and w1 are determined so that (11) and (12) are satisfied. Accordingly, stationary
allocation is defined when qt’s and κt’s are constant.

Characterization. In what follows, we characterize the solution to the component
planning problem 15 and discuss the main properties of the distortions. The first point
to be noted in characterizing the solution to 15 is that the problem is homogenous in w.
This simplifies the analysis to a great extent and the following proposition holds:

Proposition 2 Given {qt, κt}, the value function and policy functions associated with (15) sat-
isfy the following:

1. When σ = 1,

Pt (w) = −Bte
1−β̂
1+β w

+ Ht

c0 (θ, w) = c0t (θ) e
1−β̂
1+β w

c1 (θ, y, w) = c1t (θ, y) e
1−β̂
1+β w

k (θ, w) = kt (θ) e
1−β̂
1+β w

w′ (θ, y, w) = ŵt (θ, y) + w

U (θ, w) = Ut (θ) + w

for some Bt, c0t, c1t, kt, ŵt and Ut. Ht is the present value of labor income:

Ht = pt +
∞

∑
s=0

qt · · · qt+2s+1pt+2s+2
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2. When σ 6= 1,

Pt (w) = −Bt ((1− σ)w)
1

1−σ + Ht

c0 (θ, w) = c0t (θ) ((1− σ)w)
1

1−σ

c1 (θ, y, w) = c1t (θ, y) ((1− σ)w)
1

1−σ

k (θ, w) = kt (θ) ((1− σ)w)
1

1−σ

w′ (θ, y, w) = ŵt (θ, y) (1− σ)w

U (θ, w) = Ut (θ) (1− σ)w

for some Bt, c0t, c1t, kt, ŵt and Ut.

Proof can be found in the Appendix.
There are three main takeaways from the above proposition. First, that the present

value Ht − Pt (w) is a random variable with i.i.d. growth rate:

Ht+2 − Pt+2 (wt+2)

Ht − Pt (wt)
=

 Bt+2
Bt

e
1−β̂
1+β ŵt+2(θt,yt+1) σ = 1

Bt+2
Bt

((1− σ) ŵt+2 (θt, yt+1))
1

1−σ σ 6= 1
(19)

More specifically, for a stationary economy where Bt and Pt (·) are independent of time,
the above growth rate is an i.i.d. process. This result is specially important since one way
to think about Ht − Pt (wt) is the sum of financial wealth, −Pt (wt) and present value of
future labor income. We use this result later to show that in a modified version of the
above model, the long-run distribution of wealth has a Pareto tail.

Second, the above characterization suggests that in the stationary version of the prob-
lem, distortions or wedges are independent of history w. Hence, wedges or marginal tax
rates inherit the correlation structure of the shocks, i.e., they are i.i.d.

Finally, when old, utility u (c1,t) is always directly related to promised utility, wt+2,
in a manner that is independent of history. When σ = 1, wt+2 = 1+β

1−β̂
log c1,t + ξt where

ξt is some constant that depends on Bt+2 and qt+1. When σ 6= 1, wt+2 = ξt
c1−σ

1,t
1−σ where

ξt is a constant that depends on Bt+2 and qt+1. This implies that the component plan-
ning problem is identical to the two–period model where the discount factor is not β.
Therefore, the results from the two–period economy would apply here and the taxes are
qualitatively similar and we have the following proposition:

Proposition 3 Consider the solution to the component planning problem (15) and its implied
wedges, τK,t, and τS,t. Then:
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1. The wedges, τK,t and τS,t only depend on θt.

2. If θ̄ ≤ θ̃ (σ), then τS,t is increasing in θt, i.e., outside saving taxes are progressive.

In what follows, for general exposition, I write c0,t (θ, w) = c0,t (θ) ρ (w) where ρ (w)

is defined by

ρ (w) =

 e
1+β

1−β̂
w

σ = 1

((1− σ)w)
1

1−σ σ 6= 1
(20)

As it is clear from Proposition 2, a similar property holds for other allocations, i.e., c1, k.

3.1 Optimal Estate Taxes

In this section, I discuss the implications of the model on taxation of bequests, the third
type of savings discussed in the paper. I first start by proving a modified version of
the Inverse Euler Equation for this environment in order to characterize how efficient
incentive provision affects dynamics of consumption. I then show that optimal estate
taxes are negative in contrast with taxes on outside saving that are positive.

I start the analysis by studying the intertemporal distortions between the young and
the old. The following modified inverse Euler equations shed more light on these dis-
tortions:

Proposition 4 In the solution to 15, optimal consumption must satisfy the following equation:

βqt+1

β̂
Et

[
(αqt+2κt+3θt+2 − 1) kt+3

u′′ (c0,t+2)

u′ (c0,t+2)
2

]
+

βqt+1

β̂
Et+1

1
u′ (c0,t+2)

=
1

u′ (c1,t)
(21)

− (αqtκt+1θt − 1) kt+1
u′′ (c0,t)

u′ (c0,t)
2 +

qt

β
Et

1
u′ (c1,t)

=
1

u′ (c0,t)
(22)

Proof can be found in the appendix.
The above equations show that saving distortions are different when young and old.

In particular, when old, there are forces toward subsidization of saving while when
young, saving should be taxed. The difference lies in the role of saving and its effect
on the incentive constraint. In particular, for an old household, an extra unit of saving
would relax their descendants incentive constraint. This is because when lying house-
holds are consuming more and hence have a lower marginal utility. A small increase
in consumption in every state of the world, increases household’s utility from telling
the truth more than that of lying and hence relaxing future incentive constraint. Hence,
bequests should be taxed negatively. When young, this effect is the opposite. An extra
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unit of saving tightens the young household’s incentive to invest in the project and hence
saving should be taxed.

The above modified Inverse Euler Equations although informative, do not necessarily
pin down the sign of the saving wedge for the old. The following theorem establishes
the main result on bequest taxes:

Theorem 2 Consider the solution to the component planning problem above. It must satisfy:

β

qt+1
Et+1u′ (c0,t+2) < u′ (c1,t) .

That is bequests should be subsidized.

The proof is an illustration of the above intuition and is left for the appendix.
Note that this result is in contrast with the results from labor income risk models,

e.g., Golosov et al. (2003) among others. In particular, in models with labor income
risk and separable utility function, risk-free saving or bequests should always be taxed
due to its perverse effect on labor supply. Absent bequest taxes, households would like
to save and work less. More technically, the most attractive lying strategies are those
in which consumption decreases upon lying. Due to concavity of the utility function,
a unit of saving increases the value of lying by more than its impact on the value of
telling the truth. Therefore, saving/bequest should be taxed. In this model, however,
the opposite effect is satisfied. The most attractive lying strategy for the young is lying
upward in which consumption increases. Hence a unit of bequest from the old relaxes
future incentive for their descendants to invest and should be subsidized. In other words,
saving by the old increases resources in the future and thereby increases investment by
future youth and hence should be subsidized. On the other hand, in models with labor
supply, saving decreases labor supply by future youth and hence should be taxed.

3.2 Steady State

Here we consider the effect of private information on steady state level of capital as well
as properties of the stationary distribution of consumption, capital and promised utility.
Note that in a steady state, qt is constant as well as κt and Bt.

We define steady state as an allocation C0, C1, K, Y,and L such that

C0 + C1 + K = Y

L = 1
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where C0 is the aggregate consumption by the young, C1 is the aggregate consumption
by the old and K, Y, and L are capital stock, output, and aggregate hours respectively.
These aggregates should be consistent with the solutions of the component planning
problem above.

To characterize the steady state of this economy, we start by aggregation. Suppose
that distribution of promised utility for the young in each period is given by Ψ0,t (w).
Then aggregates in each period t are given by

C0,t =
∫

Θ
c0 (θ) dF (θ)

∫
ρ (w) dΨ0,t (w)

C1,t =
∫

Θ
c1 (θ, y) dG (y|θ, k (θ)) dF (θ)

∫
ρ (w) dΨ0,t−1 (w)

Kt+1 =
∫

Θ
k (θ) dF (θ)

∫
ρ (w) dΨ0,t (w)

Yt =
∫

Θ
κθk (θ) dF (θ)

∫
ρ (w) dΨ0,t−1 (w)

Furthermore, from labor demand, we must have

l (θ, ε, w) = κ
1

1−α εθk (θ, w)

and hence aggregate labor demand is given by

Lt = κ
1

1−α

∫
θk (θ) dF (θ)

∫
ρ (w) dΨ0,t−1 (w)

Then, feasibility implies that

C0,t + C1,t + Kt+1 = Yt

Lt = 1

Note that given the policy function for w, we must have∫
ρ (w) dΨ0,t+2 (w) =

∫
ρ (ŵ (θ, y)) dG (y|θ, k (θ)) dF (θ)

∫
ρ (w) dΨ0,t (w)

The above analysis suggests that in order to have stationarity of the optimal allocation,
it must be that ∫

ρ (ŵ (θ, y)) dG (y|θ, k (θ)) dF (θ) = 1 (23)

The above condition, together with the fact that P′ (wt) has some martingale property,
i.e., it is a supermartingale or submartingale, gives us some information about the sta-
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tionary market-clearing value of q.In particular, we have the following:

EtP′ (wt+2) =
β̂

q2 P′ (wt) (24)

From Proposition 2, we have

P′ (wt+2)

P′ (wt)
=

 ((1− σ) ŵ (θt, yt+1))
σ

1−σ σ 6= 1

e
1+β

1−β̂
ŵ(θt,yt+1)

σ = 1

So, (24) can be written as

∫
Θ×R

((1− σ) ŵ (θ, y))
σ

1−σ dG (y|k (θ) , θ) dF (θ) =
β̂

q2 , σ 6= 1 (25)∫
Θ×R

e
1+β

1−β̂
ŵ(θ,y)

dG (y|k (θ) , θ) dF (θ) =
β̂

q2 , σ = 1 (26)

The above equations combined with (23) pin down the stationary interest rate, q. In

particular, in case of log-preferences, since ρ (w) = e
1+β

1−β̂
w

, stationarity implies that β̂ = q2.
In other case, we can provide partial characterizations using Jensen’s inequality. We have
the following proposition:

Proposition 5 In any steady state of the dynamic economy:

• When σ = 1, q =
√

β̂,

• When σ < 1, q <
√

β̂,

• When σ > 1, q >
√

β̂.

Proof can be found in the appendix.
The idea behind the above results is similar to Angeletos (2007). On the one hand,

the existence of private information and exposure to risk means that households have
high demand for a risk-free asset, i.e., a lower q. At the same time, a lower level of
investment in risky assets, implies a lower level of capital stock and hence a higher rate
of return. However, unlike Angeletos (2007), these two effects completely offset each
other in the log-case. In addition, when σ > 1, the rate of return is lower than natural
rate of discounting across periods and when σ > 1, the rate of return is higher.17

17A similar result holds in Farhi and Werning (2012).
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3.2.1 Stationary Distribution

It can be show that, similar to most models of dynamic contracting with private informa-
tion, the stationary distribution is trivial and almost all the agents will be at the lowest
possible utility level, 0 in case of σ < 1 and −∞ in case of σ ≤ 1. To see this, note that
when σ 6= 1, wt+2 = wt · (1− σ) ŵ (θt, yt+1), i.e., wt is a geometric random walk. Hence,
either E [log ((1− σ) ŵ (θ, y))] < 0, in which case by law of large number wt converges to
its lower bound almost surely,or E [log ((1− σ) ŵ (θ, y))] > 0, in which case wt converges
to infinity almost surely.18 When σ = 1, wt+2 is a random walk with drift, E [ŵ], and
(26) implies that E [ŵ] < 0. Hence, wt converges to −∞ almost surely. Nevertheless, in
all cases, variance of wt grows without bound over time. We summarize this discussion
in the following corollary:

Corollary 3 In a stationary economy, promised utility wt satisfies the following long-run prop-
erties:

• When σ ≥ 1, wt → −∞, a.s.,

• When 1 > σ > 0, wt → 0, a.s.,

• For all values of σ, Var [wt]→ ∞.

The proof can be found in the appendix.
The above characterization, implies that although a stationary economy exists, promised

utility, which can be thought of as a proxy for wealth, is not a stationary process. That
is a version of immiseration holds in this economy – see Thomas and Worrall (1990),
Atkeson and Lucas (1992), among many others. In the following section, we introduce a
method to resolve this issue in order to achieve stationarity.

4 Long Run Distribution of Wealth

In this section, I discuss how the model developed above can be extended to generate a
long-run distribution of wealth with a Pareto tail and what an optimal Pareto tail looks
like. As Corollary 5 shows, a version of the infamous immiseration result holds in steady
state of the model developed above. Note that this immiseration result can be thought
of as ever increasing borrowing by each generation against their descendents labor and
capital income. One natural assumption would be that a social planner can have the

18An application of Jensen’s inequality and (25) implies that when σ > 1
2 , E [log ((1− σ) ŵ)] < 0.
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ability to protect future generations in face of this ever-increasing borrowing. That is,
it is possible to look at Pareto efficient allocations that do not only favor the initial two
generations. This is the approach in this section.

Augmented Problem. I augment the contracting problem in (15) with a constraint of
the following form:

wt ≥ w

where w > infc>0 u (c)(which is either 0 or −∞). One way to interpret the above con-
straint is that the social planner cares about future generations more than the initial ones,
i.e., households born in periods 1 and 2. Hence, imposing the above constraint is equiv-
alent to consider points on the Pareto frontier that put positive weight on the utility of
households born in periods t = 2, 3, · · · (Recall that the planning problem considered in
section 3 only puts positive weight on the utility of households born in periods 1 and
2; see objective (13)). A similar approach for establishing stationarity in economies with
private information is used in Atkeson and Lucas (1995) and Albanesi and Sleet (2006).19

Under the above augmentation, the component planning problem can be written as

Pc (w) = max
∫

Θ
[αqκθk (θ)− c0 (θ)− k (θ) + p (27)

+q
∫ ∞

0

[
−c1 (θ, y) + qPc

(
w′ (θ, y)

)]
dG (y|θ, k (θ))

]
dF (θ)

subject to ∫
U (θ) dF (θ) = w

log c0 (θ) +
∫ [

β log (c1 (θ, y)) + β̂w′ (θ, y)
]

dG (y|θ, k (θ)) = U (θ)∫ ∞

0

[
β log (c1 (θ, y)) + β̂w′ (θ, y)

]
gk (y|k (θ) , θ) dy = u′ (c0 (θ))

w′ (θ, y) ≥ w.

Note that we have already assumed that the economy is stationary – both labor income,
p, and risk free rate, q−1, are constant.

Wealth and Taxes. The above planning problem, although informative about the
behavior of allocations, does not necessarily have sharp predictions about wealth. Nev-
ertheless, the object Pc (w), being the difference between present value of income and

19This is in contrast with papers like Farhi and Werning (2007) or Sleet and Yeltekin (2006) where the
constraints are of the form,

∫
wtdµt ≥ w. I suspect that the implications of the model are not that different

under this assumption.
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consumption for a generation with history represented by w, can tell us something about
wealth. In fact,here, I construct a tax function that implies that P (w) is total wealth for
an individual. To do so, I consider a decentralization of the following form:

c0,t + bt+1 + kt+1 = q−1at + p (28)

c1t + at+2 = q−1bt+1 + yt+1 − T (yt+1, bt+1, at) (29)

at+2 ≥ a (30)

The above equations represent the budget constraints for each household who receives
q−1at in the form of bequest from her ascendants, has labor income p in the first period
and invests in risk free bond as well as risky capital. In the second period, she collects
income from these two sources and pays taxes that depend on all three types of capital
income: bequests, inside investment, and outside saving. The household is then subject
to a limit on how much assets she can leave for her descendants. In the following
proposition, I establish that it is possible to choose a tax function so that household’s
optimal choice implements allocations associated with (27) and at = −qPc (wt).

Proposition 6 Consider the allocations created from the policy functions in (27), i.e.,
{

c∗0,t, c∗1,t+1, k∗t+1

}
with the appropriate history dependence. Suppose that c0 (θ) + k1 (θ) is monotone in θ. Then a
tax function T (yt+1, bt+1, at) together with a exist so that a households that maximizes utility
subject to the budget constraints (28)–(30), would choose

{
c∗0,t, c∗1,t+1, k∗t+1

}
. Furthermore, in

the solution to household’s problem, at = −qPc (wt).

The proof closely follows the proof in Albanesi and Sleet (2006) and will be omitted.20

Note that a similar result holds for allocations generated by the unconstrained plan-
ning problem (15). Hence, (19) implies that the sum of human capital as well as financial
wealth is a process with random growth – although this implies that this process does
not converge. As established by many studies (Kesten (1973) in mathematics as well
as Simon (1955) and Gabaix (1999) among others in economics) such processes, when
converge, have stationary distributions with fat tails. In what follows, I first establish
that the solution to (27) has a stationary distribution. Furthermore, a property similar to
(19) holds at the limit for the solution to (27). I will then use a powerful result shown by
Mirek (2011) to show that the long-run distribution of wealth has a fat tail.

In order to use Mirek (2011)’s technique, I start by characterizing the slope of the pol-
icy function w′c (w, θ, y) (the solution to (27)) with respect to w, when w → supc≥0 u (c).

20Albanesi and Sleet (2006) construct the tax function using a backward induction argument. The same
argument works here and is available upon request.
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I do so using contraction mapping theorem. Consider the functional equation (15), its
associated value function P (w) and policy function w′ (w, θ, y). I show that if T is the
transformation associated with the functional equation (27), and Pn = TnP with associ-
ated policy function w′n (w, θ, y), then

lim
w→∞

dPn (w′n (w, θ, y))
dPn (w)

=
dP (w′ (w, θ, y))

dP (w)

Note that by Proposition 2, dP(w′(w,θ,y))
dP(w)

is independent of w.21 To complete the proof, I
assume that the derivative of the policy functions w′n (w, θ, y) converges to the derivative
of w′c (w, θ, y).

Assumption 2 The derivative of the policy function at iteration n, ∂
∂w w′n (w, θ, y) converges to

∂
∂w w′c (w, θ, y) according to sup-norm.

Unfortunately, this assumption cannot be shown from first principles. It can be
shown, however, that it is equivalent to the convergence of the second derivative of
the value function. Hence:

Proposition 7 Suppose that Assumption 2 holds. Then

lim
w→∞

dPn (w′n (w, θ, y))
dPn (w)

=
dP (w′ (w, θ, y))

dP (w)

Proof can be found in the appendix.
The above result states that inclusion of borrowing constraints does not change the

slope of policy functions at infinity. The following theorem establishes the existence of
the stationary distribution when interest rates are low, i.e., q−2β̂ < 1:

Theorem 3 Suppose that Assumption 2 holds. Then for any q such that q−2β̂ < 1, the process
wt generated by the solution to (27) has a stationary distribution. Furthermore, for any stationary
measure, µ∗, we must have µ∗ ({w}) < 1.

21When σ = 1,
dP (w′ (w, θ, y))

dP (w)
= e

1+β

1−β̂
ŵ(θ,y)

.

Moreover, when σ 6= 1,
dP (w′ (w, θ, y))

dP (w)
= ((1− σ) ŵ (θ, y))

1
1−σ .

Both are independent of w.
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Proof can be found in the appendix.
Intuitively, the idea for stationarity is the following: 1. The lower bound w is not an

absorbing state; for high enough values of y, w′c (w, θ, y) > w. 2. For w high enough,
the behavior of w′c (w, θ, y) is similar to that of w′ (w, θ, y) for the unconstrained problem.
Under the assumption that q−2β̂ < 1 and that σ ≥ 1, equations (26)–(25) imply that
w′ (w, θ, y) decreases on average. Therefore for low values of wt, wt+2 tend to increase
over time while for high values of wt, wt+2 tend to decrease on average.

We also have the following Proposition:

Proposition 8 Suppose that Assumption 2 holds. Then in any steady state of the above envi-
ronment, the price of risk free bond, qc, satisfies q−2

c β̂ < 1. This in turn implies that when
σ ≥ 1, ∫

Θ×R
lim

w→∞

dPc (w′c (w, θ, y))
dPc (w)

dG (y|k (θ) , θ) dF (θ) < 1.

Proof is left for appendix.
The above Proposition states that if a steady state exists, it must be that interests rates

are low – lower than the discount rate and hence by Theorem 3, wt or wealth −qPc (wt)

is a stationary process with a non-trivial stationary distribution. Furthermore, it shows
that P (wt) satisfies the basic requirements of the main result in Mirek (2011) – Theorem
1.8. Hence, we have the following theorem:

Theorem 4 Suppose that σ ≥ 1. If Ψ is the long-run distribution of wealth at = −qPc (wt), it
satisfies

lim
t→∞

t−νΨ (a > t) = ψ

where ψ is a constant and ν satisfies

∫
Θ×R

(
dP (w′ (w, θ, y))

dP (w)

)ν

dG (y|k (θ) , θ) dF (θ) = 1 (F)

Proof can be found in the appendix.
The above Theorem is a direct application of the result in Mirek (2011). It is a pow-

erful result that characterizes the tail of the distribution. In particular, there is no need
to compute the solution of the constrained problem (27). This is specially simple since
the solution of (15) is essentially the same as the solution of the two period problem. In
fact, since the margin between c1 and w′ is undistorted, and the formula for the value
function is known, w′ can be calculated as a function of c1. In general we can show that

P′
(
w′ (θ, y)

)
=

(
φ (θ) +

ζ (θ)

θk (θ)
(y− θk (θ))

)
P′ (w)
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q νIM

0.9530 − 0.9630 Non–Stationary
1.030930 1
1.031930 1.0423
1.032930 1.0872

Table 1: The tail behavior of stationary distribution in the incomplete market model

which is a similar property to Lemma 3. In light of the above formula, we can write (F)
as ∫

Θ×R
(φ (θ) + ζ (θ) (ε− 1))

ν
σ dH (ε) dF (θ) = 1 (FF)

The above formula is informative in that it points toward forces determining the tail
of the long-run distribution of wealth. As an example, an increase in ζ (less insurance
provided) for a positive measure of θ’s causes ν to decrease and hence a heavier tail
of stationary distribution. In the online appendix, I show that in an incomplete market
version of the model, a similar result holds. Using these formulas, one can compare
the tail of the distribution of wealth in the incomplete market model with its efficient
counterpart. This is the task I set to do in the next section.

4.1 Numerical Example

Here I provide a numerical example, in order to illustrate the forces in determining the
efficient distribution of wealth. For simplicity, I assume that α = 1 – no labor input and
I calculate the policy functions for various values of interest rate q. I assume that each
generation is around three years implying a discount factor of β = (0.95)30. Furthermore,
I assume that Θ =

[
0, θ̄
]

where θ̄ = 6.075 which is associated with an annual rate of
return of approximately %5.522. In our exercise, I vary the risk-free interest rate q−1

and study its effect on the wealth distribution. Note that changing q is equivalent to
changing the lower bound on promised utility. Since the formulas are more insightful
with variable q we will use this approach. Figure 4 illustrates the tail of the distribution of
wealth for different values of q for the constrained efficient allocations. Table 1, contains
related information for the incomplete market model.

Note that as it can be seen, with incomplete market, the tail of the wealth distribu-
tion is non-existent for q close to β – it can be shown that with q < β, the process is
non-stationary. Moreover, for q high enough, the solution to the constrained efficient

22The rest of the parameters are as follows, θ is Pareto distributed with parameter a = 2 – implied
variance of .5. φ = 1 – an implied variance of 1.
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Figure 4: Tail of the stationary distribution of wealth in the constrained efficient alloca-
tion

allocation does not exists. This is due to the fact that the marginal cost of investment
arising from moral hazard is bounded from above and with q high enough it is optimal
to invest only in the most productive project.

As it can be seen, in the constrained efficient allocation, the tail of the distribution
is more responsive to changes in the interest rate compared to the incomplete market
model. This is perhaps because there is more variability in consumption with incom-
plete market. The following figures show average consumption as well the slope of the
consumption schedule with respect to ε. As for constrained efficient allocation, average
consumption is roughly constant in θ while the slope is increasing in θ. On the other
hand, consumption is much more volatile in the incomplete market model. Both aver-
age value of consumption as well as its slope with respect to ε. Note that in this model
there is also a selection effect: as q varies, the cutoff for projects used is given by θl

where qκθl = 1. With incomplete markets this effect is more pronounced. When q is
high enough, there are many low productivity projects selected. The high variability of
consumption implies a lower ν and hence a fatter tail for the distribution of wealth with
incomplete market.
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Figure 5: Average consumption with constrained efficiency
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Figure 6: Average consumption with incomplete market
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Figure 7: Slope of consumption with respect to ε, constrained efficient
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Figure 8: Slope of consumption with respect to ε, incomplete market
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5 Conclusion

In this paper, I have studied optimal taxation of capital income in presence of capital
income risk. I have shown that allowing households to invest in businesses, thereby
being subject to idiosyncratic investment risk, changes the standard results on taxation
of wealth and capital income. I have also shown how the model can be used to study
efficient distribution of wealth.

This paper can be thought of as a first step toward designing capital income taxes
for the wealthy. The US economy is perhaps comprised of households with significant
capital income risk and households with labor income risk. When the tax authority
has the ability to distinguish between the two types of households, designing optimal
taxes are easy: it is optimal to use the results of this paper for households with major
capital income risk and use the implications of models with labor income risk on the
rest. However, it is perhaps unrealistic to assume such an ability for the tax authority.
Absent this ability, the tax authority can use wealth as a proxy for the likelihood of being
each type of households: wealthy households are perhaps more subject to capital income
risk and should be taxed according to insights developed here. It would be an important
extension of this paper, to study optimal taxes in such an environment.

Finally, although I have interpreted the agents in the model as households subject to
capital income risk, the model can be used for a variety of issues. In particular, it can
be interpreted as a model with risky human capital and private information. Hence,
its implications can be used to draw policy implication for labor income for top labor
earners as well.
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Appendix

A Proofs

Proof of Lemma 1.
Consider the First Order Conditions from the program (7). The FOC associated with

c1 implies:

β
1
c1
− λ1 + ζ̂β

1
c1

(
−1− εh′ (ε)

h (ε)

)
= 0 (31)

where ζ̂k1 is the multiplier associated with (6). Hence,

c1 =
β

λ1

(
1 + ζ̂

(
−1− εh′ (ε)

h (ε)

))
=

β

λ1

(
1 + ζ̂

1
η
(ε− 1)

)
where the last equality is derived using the properties of the Gamma distribution. This
proves part 1.

Integrating (31) over ε ∈ R+, and using the fact that

∫ ∞

0

(
−1− εh′ (ε)

h (ε)

)
dH (ε) = 0,

we have ∫ ∞

0
c1 (θ, ε) dH (ε) =

β

λ1

which proves part 2.
Q.E.D.

Proof of Theorem 1.
In light of Lemma 1 the constraint (6) can be written as

ρ
k1

c0
= β

∫ ∞

0
log (φ (θ) + ζ (θ) ε) (ηε− η) dH (ε)

Note that, one can write the objective as

∫ [
log c0 + β

∫
log (φ + ζε) dH (ε)

]
dF (θ)
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Given this modification of the constraint, the first order conditions associated with prob-
lem (7) are given by

1
c0
− λ0 + ρζ̂

k1

c2
0

= 0 (32)

β
∫ ∞

0

1
φ + ζε

dH (ε)− λ1 + ζ̂β
∫

ηε− η

φ + ζε
dH (ε) = 0 (33)

β
∫ ∞

0

ε

φ + ζε
dH (ε)− λ1 + ζ̂β

∫
ε(ηε− η)

φ + ζε
dH (ε) = 0 (34)

λ1θ − λ0 − ρζ̂
1
c0

= 0 (35)

If we multiply the second equation with φ and the third one with ζ and add them
together, we have

β = λ1 (φ + ζ)

If we replace the above in the second FOC, we have

β
∫ 1 + ζ̂η (ε− 1)

φ + ζ + ζ (ε− 1)
dH = λ1 → β

∫ 1 + ζ̂η (ε− 1)
λ−1

1 β + ζ (ε− 1)
dH = λ1

This implies that ∫ ∞

0

1 + ζ̂η (ε− 1)
1 + β−1λ1ζ (ε− 1)

dH = 1

The left hand side of the above equation is a strictly decreasing function of ζ̂ and the
equation is satisfied for ζ̂ = λ1ζ

βη . Furthermore, the last equation implies that

λ1θ − λ0 = ρζ̂
1
c0

.

Multiplying the first FOC by ζ̂
c0

, we have

1
ζ̂
− λ0

c0

ζ̂
+ ρ

k1

c0
= 0 (36)
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Furthermore

ρ
k1

c0
= β

∫ ∞

0
log (φ + ζε) (ηε− η) dH (ε)

= β
∫ ∞

0
log
(

βλ−1
1 + βλ−1

1 ζ̂η (ε− 1)
)
(ηε− η) dH (ε)

= β
∫ ∞

0
log
(
1 + ζ̂η (ε− 1)

)
(ηε− η) dH (ε) = F1

(
ζ̂
)

where F1 (ζ) is an increasing function of ζ. Hence, (36) becomes

1
ζ̂ (θ)

+ F1
(
ζ̂ (θ)

)
=

ρλ0

λ1θ − λ0
(37)

The LHS of the above is given by

1
ζ̂ (θ)

+ βηe
1

ζ̂(θ)
−1

(
1

ζ̂ (θ)
− η)ηΓ

(
−η,

1
ζ̂ (θ)

− η

)

where Γ (a, z) =
∫ ∞

z xa−1e−xdx is the incomplete Gamma function. This confirms that

ζ̂ (θ) exists when λ1
λ0

θ− 1 is less than the minimum of ρ
[

1
x + βηe

1
x−1( 1

x − η)ηΓ
(
−η, 1

x − η
)]−1

.
It can be shown that the above function is U-shaped. If we assume that for the values
of θ that (37) has two solutions, the lower solution is chosen (since it provides more
insurance at the same investment incentive) an increase in θ increases ζ̂ (θ). This shows
that ζ̂ (θ) is increasing in θ. This implies that k1

c0
is also an increasing function of θ. We

can rewrite (36) as

λ0c0 (θ) = 1 + ρ
k1 (θ)

c0 (θ)
ζ̂ (θ)

which implies that c0 (θ) is an increasing function and hence so is k1 (θ).
Obviously, for values of θ < 1/q, it is not optimal to invest at all. This concludes the

proof.
Q.E.D.

Proof of Lemma 2.
One can simply rewrite the definition of τK as

τK (θ) = 1− 1
θ

ζ (θ)

c0 (θ)

c0 (θ)

k1 (θ)
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Recall the FOCs from program (7):

k1 : λ1θ − λ0 − ζ̂
ρ

c0
= 0

and note that
ζ =

β

λ1η
ζ̂

Hence,
ζ

c0
=

1
η

β
λ1θ − λ0

ρλ1

So,

τK (θ) = 1− 1
ηρ

β

q
qθ − 1

θ

c0 (θ)

k1 (θ)

This concludes the proof.
Q.E.D.

Proof of Proposition 1.
Equation (32) can be written as

γ− λ0c0 + (λ1θ − λ0)
k1

c0
c0 = 0⇒ c0 =

γ (θ)

λ0 − (λ1θ − λ0)
k1(θ)
c0(θ)

Also, as before, we must have βλ−1
1 ζ̂ (θ) ηHence, we can rewrite the saving wedge as

1
1− τs (θ)

= β
λ0

λ1

γ (θ)

λ0 − (λ1θ − λ0)
k1(θ)
c0(θ)

∫ ∞

0

1
βλ−1

1 γ (θ) + βλ−1
1 ζ̂ (θ) η (ε− 1)

dH (ε)

= λ0
1

λ0 − (λ1θ − λ0)
k1(θ)
c0(θ)

∫ ∞

0

1

1 + ζ̂(θ)
γ(θ)

η (ε− 1)
dH (ε)

Note that from the moral hazard constraint, k1
c0

is an increasing function of ζ̂
γ . Hence

when k1
c0

is increasing, so is ζ̂(θ)
γ(θ)

. Therefore, the above should be increasing in θ.
Q.E.D.

Proof of Proposition 2.
Consider the case in which σ = 1. One can guess that the value function Pt+2 (w)

takes the following form

−Bt+2e
1+β

1−β̂
w
+ Ht+2

Now consider the policy functions c0,t (θ, w), kt+1 (θ, w), c1,t (θ, y, w), w′t (θ, y, w), Ut (θ, w)
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and define the following:

ĉ0,t (θ, w) = c0,t (θ, w) e
− 1+β

1−β̂
w

ĉ1,t (θ, y, w) = c1,t (θ, y, w) e
− 1+β

1−β̂
w

k̂t+1 (θ, w) = kt+1 (θ, w) e
− 1+β

1−β̂
w

ŵt (θ, y, w) = w′t (θ, y, w)− w

Ût (θ, w) = Ut (θ, w)− w

Then ĉ0,t (θ, w), k̂t+1 (θ, w), ĉ1,t (θ, y, w), ŵt (θ, y, w), Ût (θ, w) must solve the following
problem

max
∫

Θ

[
qtκt+1θk̂1 (θ)− ĉ0 (θ)− k̂1 (θ)− qt

∫ ∞

0

[
ĉ1 (θ, y) + qt+1Bt+2e

1+β

1−β̂
ŵ(θ,y)

]
dG (y|θ, k1 (θ))

]
dF (θ)

subject to ∫
Θ

Û (θ) dF (θ) = 0

log ĉ0 (θ) +
∫ ∞

0

[
β log (c1 (θ, y)) + β̂ŵ (θ, y)

]
dG (y|θ, k1 (θ)) = Û (θ)

Û′ (θ) =
1
θ

k̂1 (θ)

ĉ0
(
θ̂
)∫ [

β log ĉ1 (θ, y) + β̂ŵ′ (θ, y)
]

gk

(
y|θ, k̂1 (θ)

)
dy =

1
ĉ0 (θ)

This implies that these functions are independent of w. Furthermore, if the value associ-
ated with the above program is −Bt, the following should hold

Pt (w) = −Bte
1+β

1−β̂
w
+ pt + qtqt+1Ht+2

= −Bte
1+β

1−β̂
w
+ Ht

The case with σ 6= 1 can be similarly shown. A guess for the value function Pt+2 (w)

can be
−Bt+2 ((1− σ)w)

1
1−σ + Ht+2
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Then, we define the following

ĉ0,t (θ, w) = c0,t (θ, w) ((1− σ)w)−
1

1−σ

ĉ1,t (θ, y, w) = c1,t (θ, y, w) ((1− σ)w)−
1

1−σ

k̂t+1 (θ, w) = kt+1 (θ, w) ((1− σ)w)−
1

1−σ

ŵt (θ, y, w) = w′t (θ, y, w) ((1− σ)w)−1

Ût (θ, w) = Ut (θ, w) ((1− σ)w)−1

Note that since the constraint set is homogeneous in w , under the above change of
variables it becomes: ∫

Θ
Û0,t (θ) dF (θ) =

1
1− σ

ĉ0,t (θ)
1−σ

1− σ
+
∫ ∞

0

[
β

ĉ1,t (θ, y)1−σ

1− σ
+ β̂ŵ0,t (θ, y)

]
dG (y|θ, k1 (θ)) = Û0,t (θ)

Û′0,t (θ) =
1
θ

k̂1,t+1 (θ) ĉ0,t (θ)
−σ

∫ [
β
(ĉ1,t (θ, y))1−σ

1− σ
+ β̂ŵ0,t (θ, y)

]
gk

(
y|θ, k̂1,t (θ)

)
dy = ĉ0,t (θ)

−σ

Furthermore, the objective in (15) becomes

∫
Θ

[
qtκt+1θk̂1,t (θ)− ĉ0,t (θ)− k̂1,t (θ)− qt

∫ ∞

0

[
ĉ1,t (θ, y) + qt+1Bt+2 ((1− σ) ŵt+2 (θ, y))

1
1−σ

]
dG (y|θ, k1 (θ))

]
dF (θ) ((1− σ)w)

1
1−σ

+Ht.

As in the log-case the solution to optimization problem in new variables is independent
of w and the above function verifies the initial guess for the value function.

Q.E.D.

Proof of Proposition 4.
Consider the maximization problem in (15). If we write the allocation in terms of ε
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as opposed to y, the following are its associated FOCs:

αqtκt+1θt − 1− ζ
u′ (c0)

k
= 0

− 1 + γu′ (c0)− ζu′′ (c0) = 0

− qt + γβu′ (c1) + ζβu′ (c1)

(
−1− εh′ (ε)

h (ε)

)
= 0

qtqt+1P′t+2
(
w′
)
+ γβ̂ + ζβ̂

(
−1− εh′ (ε)

h (ε)

)
= 0

γ = λ

together with P′t (w) = −λ as Envelope condition. After some manipulations, the fol-
lowing hold

qt+1P′t+2
(
w′
)
= − β̂

β

1
u′ (c1)

as well as

γ =
1

u′ (c0)
+ ζ

u′′ (c0)

u′ (c0)

=
1

u′ (c0)
+ (αqtκt+1θtk− k)

u′′ (c0)

u′ (c0)
2

γ =
∫ qt

βu′ (c1)
dH

P′t (w) = −
∫

γdF

Hence,

β̂

qt+1β

1
u′ (c1,t+1)

= −P′t+2 (wt+2) = Et+1

[
1

u′ (c0,t+2)
+ (αqt+2κt+3θt+2kt+3 − kt+3)

u′′ (c0,t+2)

u′ (c0,t+2)
2

]
qt

β
Et

[
1

u′ (c1,t+1)

]
=

1
u′ (c0,t)

+ (αqtκt+1θtkt+1 − kt+1)
u′′ (c0,t)

u′ (c0,t)
2

which are the desired equations.
Q.E.D.

Proof of Theorem 2.
Consider the component planning problem (15). The FOC w.r.t to c0, U, c1, and w′,
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respectively, are given by

− 1 + γu′ (c0)− ζ̂u′′ (c0) = 0 (38)

−λ + γ = 0

−q + βγu′ (c1) + βζ̂u′ (c1)
gk
g

= 0 (39)

q2P′t+2
(
w′
)
+ β̂γ + β̂ζ̂

gk
g

= 0 (40)

where ζ̂ (θ) f (θ) is the multiplier on the incentive constraint and γ (θ) f (θ) is the mul-
tiplier on (17). By the Envelope Theorem, P′t (w) = −λ. The last two FOCs combined,
imply:

βu′ (c1) = −
β̂

qP′t+2 (w′)

To prove the above claim, we first show the following lemma:

Lemma 4 The multiplier ζ̂ is positive.

Proof. If we multiply (40) by w′g and (40) u(c1)
u′(c1)

g, we have

−qt
u (c1)

u′ (c1)
g + βγu (c1) g + βζ̂u (c1) gk = 0

qtqt+1P′t+2
(
w′
)

w′g + β̂γw′g + β̂ζ̂w′gk = 0

By adding and integrating over y > 0,

−qt

∫ u (c1)

u′ (c1)
dG + γ

∫
βu (c1) dG + ζ̂

∫
βu (c1) gkdy = 0

qtqt+1

∫
P′t+2

(
w′
)

w′dG + γ
∫

β̂w′dG + ζ̂
∫

βw′gkdy = 0

Note that by integrating (39) and (40), we must have

qtqt+1

∫
P′t+2

(
w′
)

dG + β̂γ = 0,−qt

∫ 1
u′ (c1)

dG + βγ = 0

Replacing in the above, it implies that

−qt

∫ u (c1)

u′ (c1)
dG + qt

∫ 1
u′ (c1)

dG
∫

u (c1) dG + ζ̂
∫

βu (c1) gkdy = 0

qtqt+1

∫
P′t+2

(
w′
)

w′dG− qtqt+1

∫
P′t+2

(
w′
)

dG
∫

w′dG + ζ̂
∫

βw′gkdy = 0

51



or

−qtCov(
1

u′ (c1)
, u (c1)) + ζ̂

∫
βu (c1) gkdy = 0

qtqt+1Cov(P′t+2
(
w′
)

, w′) + ζ̂
∫

βw′gkdy = 0

Adding the two constraint and using the incentive constraint, we have

ζ̂u′ (c0) = −qtqt+1Cov
(

P′t+21
(
w′
)

, w′
)
+ qtCov

(
1

u′ (c1)
, u (c1)

)
Since u (c1) and Pt+2 (w) are concave functions – this is a direct implication of theorem
2, 1

u′(c1)
is increasing in u (c1) and P′t+2 (w

′) is decreasing in w′. Hence, the RHS of the
above equations is positive and ζ > 0.

Given the above Lemma, we show that

− 1
P′t (w)

=
1
λ
>
∫

Θ
u′ (c0) dF (41)

This would imply that:

β

β̂
qt+1u′ (c1,t+1) > −

1
P′t+2 (wt+2)

=
1
λ
> Et+1u′ (c0,t+2)

and the claim follows. To see (41), note that from (38):

u′ (c0) =
1
λ
+

ζ

λ
u′′ (c0)

Since ζ > 0 and that u′′ < 0, we must have

u′ (c0) <
1
λ

This proves, (41).
Q.E.D.

Proof of Proposition 5.
First recall equation (23): ∫

Θ×R
ρ (ŵ (θ, y)) dGdF = 1
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where

ρ (w) =

 e
1+β

1−β̂
w

σ = 1

((1− σ)w)
1

1−σ σ 6= 1

Consider the case with σ = 1: Recall equation (24)

∫
Θ×R

P′t+2
(
w′t (w, θ, y)

)
dGdF =

β̂

qtqt+1
P′t (w)

In steady state, qt, κt and pt are all constant. Furthermore,

P′ (w) =
1 + β

1− β̂
Be

1+β

1−β̂
w

w′ (w, θ, y) = ŵ (θ, y) + w

Hence, the above equation implies that

∫
Θ×R

e
1+β

1−β̂
ŵ(θ,y)

dGdF =
β̂

q2

Hence, steady state implies that β̂ = q2.
When σ > 1, (24) becomes

∫
Θ×R

((1− σ) ŵ (θ, y))
σ

1−σ dGdF =
β̂

q2 .

Note that since σ > 1, the function xσ is convex in x. Hence, by Jensen’s inequality

β̂

q2 =
∫

Θ×R
((1− σ) ŵ (θ, y))

σ
1−σ dGdF <

(∫
Θ×R

((1− σ) ŵ (θ, y))
1

1−σ dGdF
)σ

So in a steady state, we must have β̂ < q2.
When σ < 1, the function xσis concave in x. Hence, a similar argument as above

shows that β̂ > q2 in steady state.
Q.E.D.

Proof of Corollary 3.
When σ = 1,

wt+2 = wt + ŵ (θt, yt+1)
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Hence,

wt = wt mod 2 +
bt/2c

∑
s=0

ŵ (θt−2s, yt+1−2s)

Now, note that in steady state

∫
Θ×R

e
1+β

1−β̂
ŵ(θ,y)

dGdF = 1

Hence, by Jensen’s inequality: ∫
ŵ (θ, y) dGdF < 0

Hence, applying law of large numbers to wt implies that

wt

bt/2c →a.s.

∫
ŵ (θ, y) dGdF < 0⇒ wt →a.s. 0

When σ 6= 1,

wt+2 = (1− σ)wtŵ (θt, yt+1)

⇒ log ((1− σ)wt) = log ((1− σ)wt mod 2) +
bt/2c

∑
s=0

log ((1− σ) ŵ (θt−2s, yt+1−2s))

Note that in steady state: ∫
Θ×R

((1− σ) ŵ (θ, y))
1

1−σ dGdF = 1

Taking log from both sides and using Jensen’s inequality implies that

1
1− σ

∫
Θ×R

log ((1− σ) ŵ (θ, y)) dGdF < log
(∫

Θ×R
((1− σ) ŵ (θ, y))

1
1−σ dGdF

)
= 0

Hence, when σ > 1 ∫
Θ×R

log ((1− σ) ŵ (θ, y)) dGdF > 0

and when σ < 1, ∫
Θ×R

log ((1− σ) ŵ (θ, y)) dGdF < 0
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A simple application of law of large number implies that

log ((1− σ)wt) → a.s.0, σ < 1

log ((1− σ)wt) → a.s.∞, σ > 1

Hence

wt → a.s.0, σ < 1

wt → a.s. −∞, σ > 1

Finally that either log ((1− σ)wt) or wt are random walks implies that its unconditional
variance converges to infinity.

Q.E.D.

Proof of Proposition 7.
I start by showing the first claim. Consider the n–th program associated with Pn (w).

I show that there exists ŵn such that

w′n (w, θ, y) = w′ (w, θ, y) , ∀w ≥ ŵn,

Pn (w) = P (w) , ∀w ≥ ŵn.

I establish this for the case with σ = 1 and the other cases can be shown similarly. I
prove this claim via induction. When n = 1, note that the unconstrained policy function
is given by w′ (w, θ, y) = ŵ (θ, y) + w. Since εh′

h is bounded below, ŵ (θ, y) is bounded
below. Hence, ŵ1 exists so that for w ≥ w− infθ,y ŵ1 (θ, y) (= ŵ1)

w′ (w, θ, y) ≥ w

Hence,
w′1 (w, θ, y) = w′ (w, θ, y) , ∀ (θ, y) ∈ Θ×R+

and other policy functions also coincide with the unconstrained policy functions. Fur-
thermore, by definition of P, we must have that P1 (w) = P (w), for all w ≥ ŵ1.
Now consider the planning problem associated with n–th iteration. Note that when
w ≥ w − n infθ,y ŵ (θ, y) = ŵn, then w′ (w, θ, y) = w + ŵ (θ, y) ≥ ŵn−1. Hence, for
w ≥ ŵn, the policy functions associated with the unconstrained program solve the con-
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strained planning problem. Hence,

w′n (w, θ, y) = w′ (w, θ, y) , ∀ (θ, y) ∈ Θ×R+

Furthermore, Pn (w) = P (w) ,for all w ≥ ŵn. Hence,

dPn (w′n (w, θ, y))
dPn (w)

=
dP (w′ (w, θ, y))

dP (w)
= e

1+β

1−β̂
ŵ(θ,y)

, ∀ (θ, y) ∈ Θ×R+.

The rest of the first claim follows from the fact that ∂
∂w ŵ′n (w, θ, y) converges to ∂

∂w w′c (w, θ, y)
in sup-norm. This can be seen from the following lemma:

Lemma 5 Consider a sequence of functions fn : R→ R with the property that limx→∞ fn (x) =
a for all n ∈ N and a ∈ R. Suppose that there exists a function f : R→R such that
limn→∞ supx∈R | fn (x)− f (x)| = 0. Then limx→∞ f (x) = a.

Proof. Note that | f (x)− a| ≤ | f (x)− fn (x)| + | fn (x)− a| , ∀x. By definition of sup-
norm convergence, for any ε, there exists n̂ such that n > n̂, | fn (x)− f (x)| < ε/2, ∀x ∈
R. Now for any n > n̂, there must exists x̃nsuch that for all x > x̃n, | fn (x)− a| < ε/2.
Now let, x̃ = infn≥n̂ x̃n. For any x > x̃, there exists m > n̂ such that x > x̃m, and hence
| fm (x)− a| < ε/2. Furthermore, | fm (x)− f (x)| < ε/2. Hence

| f (x)− a| ≤ | f (x)− fn (x)|+ | fn (x)− a| < ε, ∀x > x̃m

Therefore, limx→∞ f (x) = a.
Applying the above lemma to ∂

∂w w′n (w, θ, y) and ∂
∂w w′c (w, θ, y) proves the result.

Q.E.D.
Proof of Proposition 3.
I focus on the case with σ = 1. The rest of the cases, can be shown in a similar way.
Given the policy function w′c (w, θ, y), let

(Tµ) (A) =
∫
[w,∞)

1
[
w′c (w, θ, y) ∈ A

]
dµ (w)

A stationary measure, µ∗, is given by

Tµ∗ = µ∗

I show that the sequence Tnδw0is tight, that is, for all w0 ∈ R and ε > 0, there exists a
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compact set Aε ⊂ R such that

lim
n→∞

inf
1
n

n

∑
i=1

Tnδw0 (Aε) ≥ 1− ε.

Then by theorem 12.1.2 in Meyn and Tweedie (2009), this would imply that T has a sta-
tionary measure. Take any point w0 and let wt be the stochastic process constructed from
repeated application of w′c (w, θ, y) to w0. By law of large number, E [wn] = E [Tnδw0 ].
Note that from Proposition 7,

∀ε̂ > 0, ∃w∗; ∀w ≥ w∗,
∣∣w′c (w, θ, y)− ŵ (θ, y)− w

∣∣ ≤ ε̂

From Proposition 7 and under β̂ < q2,∫
ŵ (θ, y) dGdF < 0

Hence,
wt+2 ≤ wt + ŵ (θt, yt+1) + ε, ∀wt ≥ w∗

So
Et [wt+2] ≤ wt +

∫
ŵ (θ, y) dGdF + ε, ∀wt ≥ w∗

If ε is small enough,
Et [wt+2] < wt − ε/2, ∀wt > w∗

Now, define
w̃t = max {wt, w∗}

Note that E [w̃t], the unconditional mean of w̃t, by definition is higher than E [Tnδw0 ].
Note that since wt decreases in expectation above w∗, for t large enough, it must be
that E [w̃t] is bounded above and hence so is E [Tnδw0 ]. Suppose that this upper bound
is given by w̃. Without loss of generality, we can assume that w̃ > 0. Then, let A =

[w, w̃ + a] for some a > 0. Then, we have the following inequalities;

w̃ > E [Tnδw0 ] ≥ (1− Tnδw0 (A)) (w̃ + a) + Tnδw0 (A)w

Hence,
Tnδw0 (A) ≥ a

w̃ + a− w
> 0

This proves that Tnδw0 is a tight sequence of measure and hence so is 1
n ∑n

i=1 Tiδw0 .
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That the stationary distribution does not put full mass on w follows from the fact that
the likelihood ratio converges to ∞ as ε converges to ∞. This concludes the proof.

Q.E.D

Proof of Proposition 8.
Note that in the constrained problem, we must have

P′c (wt) = q2β̂
−1

EtP′c (wt+2) + Etξt+2

where ξt+2 is the Lagrange multiplier on wt+2 ≥ w and hence positive. In any steady
state and under the stationary measure µ∗, we must have∫

P′c (w) dµ∗ (w) = q2β̂
−1
∫ ∫

Θ×R+

P′c
(
w′c (w, θ, y)

)
dG (y|θ, k) dF (θ) dµ∗ (w)

+
∫ ∫

Θ×R+

ξ (w, θ, y) dG (y|θ, k) dF (θ) dµ (w∗)

By definition of stationary measure, we can write the above as(
1− q2β̂

−1
) ∫

P′c (w) dµ∗ (w) =
∫ ∫

Θ×R+

ξ (w, θ, y) dG (y|θ, k) dF (θ) dµ (w∗)

Since P′c is negative and ξ is positive, we must have q2β̂
−1

> 1 or β̂q−2 < 1.
The rest of the claim follows from Proposition 7. From Proposition 7, we have that

lim
w→∞

dPc (w′c (w, θ, y))
dPc (w)

=
dP (w′ (w, θ, y))

dP (w)

When σ = 1,

dP (w′ (w, θ, y))
dP (w)

=
dBe

1+β

1−β̂
(w+ŵ(θ,y))

dBe
1+β

1−β̂
w

= e
1+β

1−β̂
ŵ(θ,y)

where ŵ (θ, y) comes from Proposition 2. Note further that, equation (24) implies∫
Θ×R+

P′
(
w′ (w, θ, y)

)
dGdF = β̂q−2P′ (w) ,

or ∫
Θ×R+

e
1+β

1−β̂
ŵ(θ,y)

dGdF = β̂q−2 < 1∫
Θ×R+

lim
w→∞

dPc (w′c (w, θ, y))
dPc (w)

dGdF = β̂q−2 < 1
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When σ 6= 1,

dP (w′ (w, θ, y))
dP (w)

=
dB
(
(1− σ)2 wŵ (θ, y)

) 1
1−σ

dB ((1− σ)w)
1

1−σ

= ((1− σ) ŵ (θ, y))
1

1−σ

As before and from equation (24),∫
Θ×R+

P′
(
w′ (w, θ, y)

)
dGdF = β̂q−2P′ (w) ,

or ∫
Θ×R+

((1− σ) ŵ (θ, y))
σ

1−σ dGdF = β̂q−2 < 1

When σ > 1, an application of Jensen’s inequality implies

∫
Θ×R+

((1− σ) ŵ (θ, y))
σ

1−σ dGdF >

(∫
Θ×R+

((1− σ) ŵ (θ, y))
1

1−σ dGdF
)σ

Therefore, we must have

1 >
∫

Θ×R+

((1− σ) ŵ (θ, y))
1

1−σ dGdF

1 >
∫

Θ×R+

lim
w→∞

dPc (w′c (w, θ, y))
dPc (w)

dGdF

which concludes the proof.
Q.E.D.

Proof of Theorem 4:
Note that the process for wealth is defined by

at+2 = −qPc

(
w′c
(
(Pc)

−1
(
−q−1at

)
, θt, yt+1

))
= ψ (at, θt, yt+1)

Note that if a = −qPc (w), then

ψa (a, θ, y) =
dPc (w′c (w, θ, y))

dPc (w)

Hence, we can define M (θ, y) = lima→∞ ψa (a, θ, y) = limw→∞
dP(w′(w,θ,y))

dP(w)
. Furthermore,
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given that w is bounded below by w. There must exist, N (θ, y) such that

M (θ, y) a− N (θ, y) < ψ (a, θ, y) < M (θ, y) a + N (θ, y)

The conditions required in Mirek (2011) for existence of a Pareto stationary measure are
– see theorem 1.8:

• Condition 1: There must exist ν > 0 such that E
[
M (θ, y)ν] = 1: To see this

note that, note that from Proposition 3 E [M (θ, y)] < 1. Furthermore by Jensen’s
inequality the function E

[
M (θ, y)ν] is an increasing function of ν. Moreover, since

the likelihood ratio gk
g converges to ∞ as y tends to ∞ and that P′ (ŵ (θ, y)) =

q−1β̂
(

φ (θ) + ζ (θ)
gk
g

)
, there is a positive measure of (θ, y)’s for which M (θ, y) >

1. Hence, E
[
M (θ, y)ν] tends to ∞ as ν tends to ∞. So there must exist ν such that

E
[
M (θ, y)ν] = 1.

• Condition 2: log M (θ, y) should not have support of the form rZ: This is simply
shown from the fact that (θ, y) have continuous distributions and that w′ (w, θ, y)
is continuous in (θ, y).

• Condition 3: M (θ, y) satisfies E [Mν log M] < ∞: This is simply seen from the
fact that any polynomial or exponential function under gamma distribution has
bounded expectation. Note that P′ (ŵ (θ, y)) is a linear function of y. Since P′ is
either an exponential or power function, the expected value of P′ (ŵ (θ, y))α must
exists for any α and so E

[
M (θ, y)ν log M (θ, y)

]
must also exist.

• Condition 4: random variable N (θ, y) must satisfy E [Nν] < ∞: This is again
followed by the fact that Pc can be bounded above and below by an exponential
function and hence E [Nν] must exist.

This concludes the proof.
Q.E.D.
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