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Abstract

I develop an equilibrium model of U.S. money market funds (MMFs) and use it to analyze

how adopting a floating net asset value (NAV) would affect the liquidity provided by MMFs

and their fragility. The model captures key institutional features of MMFs such as liquidation

after "breaking the buck" and voluntary sponsor support. I show that sponsor support, which

is instrumental to attain a stable NAV, may be a source of fragility: it may make the MMF

industry prone to runs different from the canonical bank-runs. Moreover, the general equilibrium

effects in the model, mostly ignored in the policy discussion, can overturn conventional intuition.

1 Introduction

U.S. money market funds (MMFs) are financial intermediaries key to the financial system. By the

end of 2012, MMFs managed over 2.6 trillion dollars in assets, 21 percent of all U.S. mutual fund
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assets, and over 10 percent of mutual fund assets worldwide.1

MMFs are also important suppliers of short term financing, especially to financial institutions.

In December of 2011, MMFs owned over 40 percent of U.S. dollar-denominated financial commercial

paper, around a third of dollar-denominated negotiable certificates of deposit, and they were among

the biggest category of repo lenders, with an estimated $460 billion in repos.2 Given the size of

the MMF industry, and its importance as a supplier of liquidity to financial institutions, flows into

and out of MMFs can affect the whole financial system. In fact, the large outflows experienced by

the MMF industry after Reserve Primary Fund "broke the buck" in 2008 contributed largely to

the freezing of the short-term funding market. Later, in 2011, the heavy exposures of MMFs to

European financial institutions put the MMF industry at risk of transmitting distress from Europe

to the U.S. short-term funding market and the outflows from the MMF industry worsened the

situation of the Eurozone banks.3

Because of the systemic importance of MMFs, its regulation has been at the center of policy

discussion. Today, the need for further regulation is being debated. On June 5, 2013, the Securities

and Exchange Commission (SEC) voted to move forward with a proposal to impose new regulations

on the MMF industry. The mutual fund industry opposes these changes and argues that further

regulations would make the MMF industry less profitable and reduce the availability of short-term

funding.4

The most important regulations that are being considered are to impose redemption fees on

investors, and to force MMFs to abandon the stable net asset value (NAV) in favor of a floating

NAV. Redemption fees would increase investors’costs of redeeming shares and, therefore, reduce

their incentives to run on the MMFs. By adopting a floating NAV, MMFs would not be subject to

liquidation after breaking the buck. This change would reduce the relevance of voluntary sponsor

support in the MMF industry.

There seems to be no consensus on the effect adopting a floating NAV would have on the

economy, in particular on the provision of liquidity by MMFs. In this paper I develop an equilibrium

model of MMFs and use it to understand the trade-offs implied by the adoption of a floating NAV.

1See ICI (2013) .
2Source: McCabe, Cipriani, Holscher, and Martin (2012), Mackenzie, Financial Times May 3, 2011.
3See Board (2009), SEC (2009) , PWG (2010) , FSOC (2011) and Chernenko and Sunderam (2012).
4See McCabe (2011), Mendelson and Hoerner (2011), Lacker (2011), Squam Lake Group (2011), Vol-

cker (2011), Hanson, Scharfstein, and Sunderam (2012), McCabe, Cipriani, Holscher, and Martin (2012).and

http://www.preservemoneymarketfunds.org/the-impact-on-you/. Last visited November 25, 2012.

2



The model is a 3-period model of financial intermediation that incorporates features that make

MMFs unique financial institutions. There are two types of agents: risk averse investors and

risk neutral fund managers. A short-term safe asset and a long-term risky asset are traded in

competitive markets. Managers are the only agents who can access the risky asset market directly.

Investors may only access the risky asset through the managers. The intermediation contract

between investors and managers captures the demandable nature of the shares held by investors

in MMFs, the eventual liquidation after a fund breaks the buck, and, through the possibility of

voluntary sponsor support, the stable NAV. The asset structure incorporates the fluctuation in

asset prices faced by MMFs: at the time of purchase there is uncertainty about the quality of the

risky asset and its default risk. Asset prices are determined in equilibrium, which captures the size

and relevance of the MMF industry in the market for short-term financing.

The managers’support decisions determine the demand for the risky asset in the interim period

and its liquidation price. At the same time, the liquidation price of the risky asset in the interim

period determines the managers’costs and benefits of offering support. This interdependence may

give rise to strategic complementarities in the managers’support decisions and may make the model

prone to runs that are different in nature from the canonical bank runs described in Diamond and

Dybvig (1983): these runs are not runs of investors on the financial intermediaries but runs of

financial intermediaries on the asset market.5

The intuition behind the strategic complementarities that may lead to these runs is the following.

If an individual manager expects all other managers to offer support to their funds, he expects a

high demand for the asset in the interim period and high liquidation prices. These, in turn, imply a

low cost of offering support and may increase the individual manager’s incentives to offer support.

On the other hand, if the manager expects all other managers not to offer support, he expects a

low liquidation price for the asset, and high costs of offering support, which may justify him not

supporting his fund. The provision of support generates externalities: by providing support to

their funds, managers support a high liquidation price of the risky asset and provide liquidity to

the economy.

The model developed in this paper is consistent with several stylized facts documented in the

literature on MMFs. In particular, the model captures the responsiveness of MMFs’ inflows to

the funds’past return (positive performance-flow relation), and the lower risk-taking by fund with

5Bernardo and Welch (2004) analyze runs on asset markets that are driven by investors’fear of future liquidity

shocks.
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sponsors that also offered non-money market mutual funds and other financial services.

Finally, I find that, in the model, the adoption of a floating NAV would be successful in de-

creasing the fragility of the MMF industry. However, in equilibrium, the regulation would also

affect intermediation fees, support decisions, and asset prices. Furthermore, all these could have

countervailing effects on the risk and the return of intermediation for investors and MMF managers,

and, hence, on the provision of liquidity and on welfare.

When going from a stable to a floating NAV system, investors in MMFs lose the insurance pro-

vided by sponsor support. Everything else equal, risk averse investors would reduce their exposure

to MMFs in response to this loss of insurance. Thus -as argued by the industry- the supply of

liquidity in the asset market would go down. In equilibrium, the new regulation also changes asset

prices and fees, and, hence, the risk and the return of investing in a MMF change beyond the loss of

insurance. In numerical examples, I find that the total supply of liquidity increases when adopting

a floating NAV. These examples illustrate that general equilibrium effects can be counterintuitive,

and highlight the usefulness of looking at the policy discussion through the lens of a model.

To the best of my knowledge, this paper is the first to develop a model of MMFs. Since the

regulations mentioned above target particular institutional features of the MMF industry, a model

that captures these peculiar features is needed to analyze the impact of those regulations. MMFs

are different from banks and from other mutual funds and, therefore, existing models of banking

and delegated portfolio management are not well suited to perform this task.

Several papers have analyzed the MMF industry empirically. Chen, Goldstein, and Jiang (2010)

document the presence of strategic complementarities in the redemption behavior of investors in all

mutual funds, including MMFs. These strategic complementarities, which are not the focus of my

paper, make MMFs prone to self-fulfilling runs like those considered by Diamond and Dybvig (1983)

and analyzed extensively in the banking literature. McCabe (2010), Chernenko and Sunderam

(2012), Kacperczyk and Schnabl (2013) and Schmidt, Timmermann, and Wermers (2013) document

run-like events in the MMF industry. McCabe, Cipriani, Holscher, and Martin (2012) propose

a minimum balance at risk rule to mitigate the vulnerability of MMFs to runs and reduce the

investors’ incentives to redeem MMF shares quickly when a fund is in distress. The relevance

of sponsor support in the MMF industry is documented by Moody’s (2010), Brady, Anadu, and

Cooper (2012), and Kacperczyk and Schnabl (2013).

In the theoretical literature, Ennis (2012) uses banking and delegated portfolio management

models to study how different ways to compute the NAV in MMFs would affect investors’incentives
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to redeem their shares under different assumptions about the main function of MMFs. However,

his analysis abstracts from sponsor support, which played a crucial role in the functioning of the

U.S. MMF industry and is a key element in my model.

Starting with Bhattacharya and Pfleiderer (1985) there has been a large literature dealing with

the optimal compensation structure in delegated portfolio management relationships. In order to

analyze the effect of the regulations, the model developed in this paper takes the intermediation

contract as given. I do not provide a rationale for the adoption of such contract which, though an

interesting task, is beyond the scope of this paper.6

The next section presents some institutional features of MMFs. Section 3 introduces the model.

Section 4 defines and characterizes the equilibrium. Section 5 discusses the forces at play in the

model. Sections 6 contains the policy analysis and section 7 concludes.

2 Money Market Funds: Institutional Features

MMFs are open-ended mutual funds that offer individuals, corporations, and governments access

to money market instruments, such as US Treasury bills and commercial paper. MMFs act as

intermediaries between investors and borrowers who seek short-term financing. As required by

regulation, all mutual funds, including MMFs, issue demandable shares, i.e., they provide "same

day" liquidity, allowing investors to redeem their shares at any time at the net asset value of the

shares (NAV).7 What makes MMFs special is that they seek to maintain a stable NAV, usually of

$1. To prevent the NAV from going above $1, all positive investment returns are paid out entirely

as dividends, with no capital gains or losses to track. If the NAV drops below $1, it is said that

the fund "broke the buck". In the event of a fund breaking the buck, regulation states that "the

board of directors shall promptly consider what action, if any, should be initiated by the board of

directors." (Rule 2a-7(b), 17 C.F.R. § 270.2a-7(b)) In practice, in the only two cases in which a

MMF’s NAV dropped below $1, the funds were eventually liquidated.8

Even though a MMF could become a floating NAV fund after breaking the buck, adopting a

floating NAV would not reduce investors incentives to redeem their shares and it would decrease the

NAV even more. Since a fund would likely sell the more liquid assets to meet excess redemptions,

investors who chose not to redeem their shares would be left holding a portfolio of less-liquid,

6For a discussion on the origin of MMFs see chapter 1 in Carnell, Macey, and Miller (2008).
7Title 17 - Commodity and Securities Exchanges - 17 CFR § 270.22c-1 (b)(c)
8See Fisch and Roiter (2011) for a detailed description of the current regulation of MMFs.
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longer-dated securities. This would increase the incentives of investors to withdraw quickly, even

at a reduced NAV, and drive the NAV even lower.9 This downward spiral mechanism makes it

impossible for a MMF to transition to a floating NAV fund and makes liquidation the only viable

option after breaking the buck. For example, on September 16, 2008, a day after Lehman Brothers

declared bankruptcy, the Reserve Primary Fund (RPF) delayed share redemptions for up to seven

days, abandoned the stable NAV, and became a floating NAV fund. Two days later, on September

18, 2008, RPF suspended the redemption of shares and started the orderly liquidation of the fund’s

assets after experiencing massive share redemptions. RPF, which had approximately $62 billion in

assets under management on September 15, 2008, experienced redemptions of $60 billion between

September 15 and September 18, 2008.10

In order to maintain a stable NAV, MMFs rely on two mechanisms: the computation of the

NAV and sponsor support. The SEC, via Rule 2a−7, allows MMFs to use amortized cost valuation

and penny-rounding pricing to compute the NAV.11 Many of the assets held by MMFs lack market

price quotations. This makes it diffi cult for MMFs to price their assets accurately. Amortized cost

valuation allows MMFs to value their assets as if held to maturity. Penny-rounding pricing allows

MMFs to report a NAV of $1 as long as the calculated value is between $0.995 and $1.005. Using

amortized cost valuation and penny rounding makes MMFs prone to runs by shareholders. For

example, if the NAV is just below $1, shareholders who redeem their shares first get $1 and by doing

so reduce the value of the fund’s assets, imposing costs on non-redeeming shareholders who might

not get $1 for their shares. Analogously, if the NAV calculated using amortized cost valuation differs

from the market value of the asset, investors might be better off redeeming their shares. Since the

liquidation value of the assets differs from the NAV computed by the MMF, investors who do not

redeem their shares bear the cost of paying redeeming investors $1 for something which is worth

less than $1 in the market. These phenomena resemble the mechanism behind the canonical bank

runs described by Diamond and Dybvig (1983), and dealt with in a very large literature.

In my model, I abstract from the possibility of runs on MMFs by assuming that all assets are

traded in frictionless competitive markets, and that the shares in MMFs are priced-to-market. In

my model, there is no need to use amortized cost accounting since price quotations are always

9See Hanson, Scharfstein, and Sunderam (2012).
10See http://www.primary-yieldplus-inliquidation.com/pdf/PressRelease2008_0916.pdf and http://www.primary-

yieldplus-inliquidation.com/pdf/PressReleasePrimGovt2008_0919.pdf . Last accessed February 15, 2013.
11Rule 2a-7 allows MMFs to use amortized cost valuation "only so long as the [fund] board of directors believes

that it fairly reflects the market-based net asset value per share".
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Figure 1: Number of Funds Receiving Support: 1980-2011. Sources: Brady, Anadu, and Cooper (2012) and

Moody’s (2010).

available.

The other mechanism MMFs rely on to maintain a stable NAV is voluntary sponsor support.

Breaking the buck is a costly event for sponsors of MMFs, not only because of the forgone future

profits from operating the MMF, but also because of possible negative spillovers to other activities

in which the sponsor participates.12 Therefore, companies that sponsor MMFs may choose to offer

support to their MMFs to prevent the funds from breaking the buck. Brady, Anadu, and Cooper

(2012) find that at least 21 MMFs would have broken the buck if they had not received sponsor

support during the last financial crisis. Moreover, their data suggests that sponsor support was

frequent and significant between 2007 and 2011: 78 MMFs (out of a total of 341 MMFs) received

sponsor support during this period in 123 instances for a total amount of at least $4.4 billion. In

fact, as shown by Moody’s Investors Service (2010), voluntary sponsor support has been a common

feature throughout the history of the MMF industry even prior to the recent financial crisis. Figure

1 shows the number of funds receiving support from 1980 to 2011.

The features described above make MMF unique financial institutions. In particular, as illus-

trated in figure 2, the payoff received by investors in MMFs can be seen as a hybrid between that

received by investors in other mutual funds, and that received by depositors in banks. If no sponsor

12Kacperczyk and Schnabl (2013) find evidence of these spillovers.
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Figure 2: The net asset value for mutual funds and MMFs is calculated as the total value of the fund’s assets

divided the total number of outstandig shares. The asset value of assets for banks is calculated as the total

value of the bank’s assets divided the total amount of deposits.

support is offered, investors in MMFs are true shareholders and, as for investors in other mutual

funds, the value of their shares coincides with the market NAV. If sponsor support is offered, the

value of the shares for investors in MMFs is the same independently of the value of the fund’s as-

sets. This flat portion of the investors’payoff makes shares in MMFs resemble debt. Nevertheless,

sponsor support is voluntary, and, though it is anticipated by investors, it is not mandated by the

intermediation contract. The intermediation contract assumed in the model developed in the next

section captures these features.

3 Model

The model has three-periods, t = 0, 1, 2, and one good. There are two types of agents in this

economy: investors and managers. There is a continuum of measure 1 of each type of agent.

Investors are risk averse with preferences given by E
[
log
(
W I

2

)]
where W I

2 is the investor’s wealth

at t = 2, and they are endowed with W I
0 units of the good at t = 0. Managers are risk neutral

with preferences given by E
[
WM

2

]
where WM

2 is the manager’s wealth at t = 2. Managers are

endowed with WM
0 units of the good at t = 0 and E > 0 at t = 1. There are two types of assets:

a short-term, safe asset, and a long-term, risky asset. The safe asset is a one-period bond supplied

perfectly elastically at price qt in periods t = 0, 1. One unit of the safe asset bought at t pays 1

unit of the good at t+ 1. The risky asset is a two-period asset. A unit of the asset bought at t = 0

has a random payoff d at t = 2. The payoff structure is as follows:

d =

 d̄ > 0 with probability π

0 with probability (1− π)
.
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The probability π is a random variable whose realization is observed by everyone at t = 1. π is

uniformly distributed over [π, π̄] with 0 ≤ π, π̄ < 1. The probability π can be interpreted as the

quality of the risky asset.

The risky asset is traded in frictionless competitive markets at t = 0, 1 at prices p0 and p1 (π)

respectively. At t = 0, the supply of the risky asset is given by S (p0), where S′ (p0) > 0. The

supply of the asset in period 1 is fixed and equal to the amount of the risky asset traded at t = 0.

I assume that no short-selling is allowed.

To include motives for intermediation, I follow the limited market participation literature and

assume that investors can only invest directly in the safe asset. As in He and Krishnamurthy

(2012) I allow managers to invest in the risky asset on behalf of investors and act as financial

intermediaries.

Managers can choose whether to become intermediaries. If they choose not to become inter-

mediaries, they manage their own wealth. If they choose to offer intermediation services, they can

manage assets on behalf of one investor, at most, by opening a fund. The intermediation relation

is long-term: once an investor chooses a manager with whom to invest at t = 0, he cannot invest

with other managers at t = 1. Managers incur in a non-pecuniary fixed cost C > 0 at t = 0 if

they manage funds for an investor. Each period t, a fund consists of the manager’s wealth, WM
t ,

and the amount the manager is managing for the investor, AIt . The manager makes all portfolio

decisions on behalf of the fund and these decisions are non-contractible. For simplicity, I assume

that the manager has to invest his own wealth in the same way in which he invests the investor’s

wealth, i.e., managers can only manage one portfolio at a time.

The intermediation contract is as follows. Managers charge a fraction f of the assets under

management each period in return for intermediation services. For example, if a manager manages

AI0 for an investor in period 0 and AI1 in period 1, he will collect fees fAI0 at t = 0 and fAI1 at

t = 1. An investor with AIt under the management of a manager with wealth W
M
t in period t is

entitled to a fraction (1− f)AIt /
(
WM
t +AIt

)
of the value of the fund’s assets at t + 1. Hence, by

investing with a manager, investors become shareholders of the fund owning (1− f)AIt shares out

of a total of
(
WM
t +AIt

)
outstanding shares of the fund. At t = 1, investors are paid the value

of their shares and choose how much of their wealth to invest with their manager and in the safe

asset. The value of a share, or net asset value (NAV), is the value of the fund’s assets divided the

total number of outstanding shares.

To capture the "breaking the buck" feature of MMFs, I assume that if the value of the investor’s

9



Figure 3: Timeline.

share goes below x < 1/q0 in period 1, the fund is liquidated. Upon early liquidation of the fund,

the manager suffers a loss Bπ, B ≥ 0, and he cannot offer intermediation services at t = 1. To

prevent the fund from being liquidated at t = 1, the manager can choose to offer support to the

investor and keep the value of the investor’s shares at x.

I assume that the intermediation industry is competitive and that all the surplus of a match

between an investor and a manger goes to the investor.

The timing of the model is as follows. At t = 0, each manager chooses whether to offer

intermediation services or not. If they choose to become intermediaries, managers choose the

fund’s portfolio. Otherwise they choose how to invest their own wealth. Managers choose which

fraction of the fund’s assets under management to invest in the risky asset, aM0 , and which to invest

in the safe asset
(
1− aM0

)
. At the same time, investors make their portfolio decision: they choose

the fraction of their wealth to invest with their manager, aI0, and the fraction to invest in the safe

asset,
(
1− aI0

)
. Simultaneously, the price of the risky asset, p0, is determined in a centralized,

competitive market.

At t = 1, the probability of success of the risky asset, π, is realized. After observing this

probability, portfolio and support decisions are made simultaneously and, at the same time, the

price of the risky asset is determined. Each manager chooses the fraction of his fund’s assets to

invest in the risky asset, aM1 , and which to invest in the safe asset,
(
1− aM1

)
, and the probability

with which to offer support to investors, s (π) ∈ [0, 1]. If the fund is not liquidated early, investors

choose the fraction of their wealth they want to invest with their manager, aI1, and the fraction

they want to invest in the safe asset,
(
1− aI1

)
. Finally, at t = 2, the payoff of the risky asset is

realized and the fund is liquidated. Figure 3 depicts this timeline.
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3.1 Discussion of assumptions

The model presented in the previous section can be viewed as a delegated portfolio management

model with particular features that are meant to capture key characteristics of MMFs. In particular,

the demandable nature of shares and the open-endedness of MMFs are captured by the ability of

investors to adjust their portfolio in the interim period. The liquidation threshold, x, introduced

as part of the intermediation contract, gives incentives to managers to keep the net asset value

stable and captures the eventual liquidation of a fund after a "breaking the buck" event. The cost

of early liquidation of a fund imposed on managers, Bπ, is meant to capture the spillover losses a

sponsor may suffer if one of his MMFs breaks the buck. Finally, the possibility of sponsor support

is introduced by allowing the managers, who fulfill both the role of fund managers and sponsor

companies in the model, to transfer resources to investors to prevent the fund from being liquidated.

The main difference between the model presented here and other banking and delegated portfolio

models lies in the intermediation contract assumed, which incorporates key features of MMFs.13

The asset structure is meant to capture the maturity mismatch problem inherent to MMFs

and the trade-off between maturity, risk and return. The short-term safe asset can be interpreted

as a treasury bill while the long-term, risky asset can be though of as commercial paper. The

uncertainty structure embedded in the payoff of the risky asset implies that there are two sources

of risk for commercial paper. On one hand, the quality of commercial paper is subject to shocks

before the maturity date (downgrades). On the other, at maturity, commercial paper is subject to

default. The assumption of no short-selling is consistent with the regulation of MMFs.

The functional form of the utility functions assumed makes the model tractable. The managers’

risk neutrality makes the calculation of the support decision independent of wealth levels other than

through the managers’ability to offer support. In the same way, investors having constant relative

risk aversion implies that the portfolio choice in the interim period depends only on the quality

of the risky asset, π, and on its price. This investment decision is independent of the investors’

wealth and, therefore, of the support decision and the choices at t = 1. These simplifications make

it possible to have closed form solutions for prices and support thresholds at t = 1.

The assumption that x < 1/q0 implies that a manager can always choose a risky portfolio which

is still conservative enough to always avoid breaking the buck. If the only way for the manager

to avoid breaking the buck in all states π was to invest in a safe portfolio, managers would have

13 In this setup, the optimal contract between risk averse investors and risk neutral managers is debt.
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to choose between breaking the buck with positive probability or not opening a fund at all. Since

investors can invest in the safe asset on their own, they would not pay fees to a manager that chose

a safe portfolio.

4 Equilibrium

The return on a unit invested with a manager depends on the asset prices, on the manager’s

portfolio choice and on the manager’s support decision. Hence, to decide how much to invest

with a manager, investors need to anticipate not only the equilibrium asset prices, but also their

managers’actions. In the same way, a manager’s payoffs depend on the amount of resources he

manages for investors. Therefore, managers need to anticipate asset prices and their investors’

actions when making choices. This is captured in the definition of equilibrium.

Definition 1 A symmetric equilibrium is a set of price functions {p∗0, p∗1 (π)}, functions for port-

folio choices
{
aM∗0 , aI∗0 , a

M∗
1 (π) , aI∗1 (π)

}
, a support probability function s∗ (π) ∈ [0, 1], and a fee

f∗ such that:
(
aI∗0 , a

I∗
1 (π)

)
solve each investors’problem taking prices and his manager’s decisions

as given,
(
aM∗0 , aM∗1 (π) , s∗ (π)

)
solve each manager’s problem taking prices and his investor’s de-

cisions as given, the risky asset market clears at t = 0, 1, and managers are indifferent between

managing an investor’s funds and not doing so.

The equilibrium can be computed using backwards induction. I will divide the characterization

of equilibrium in two parts: time 0 and time 1. In the following subsection I characterize the agents’

problems at t = 1 for a given realization of π, and given portfolio choices aM0 and aI0 and fees f .

Then, I move to the decisions at t = 0 which take into account the equilibrium choices at t = 1. I

will focus my analysis on symmetric equilibria.

4.1 t=1

All decisions at t = 1 depend on the choices and equilibrium objects determined at t = 0, that is,

on aM0 , a
I
0, f and p0. To simplify the notation, I will mostly ignore this dependence when writing

down equilibrium objects at t = 1.
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4.1.1 Manager’s portfolio choice at t=1

At t = 1, a manager with wealth WM
1 who receives fees fAI1 solves

max
aM1,i∈[0,1]

Ed
[(

aM1
d

p1
+
(
1− aM1

) 1

q1

)(
WM

1 + fAI1
)∣∣∣∣π] .

The manager’s portfolio choice depends only on the expected returns of the assets in which the

manager can invest: aM∗1,i = 1 if πd̄/p1 > 1/q1, aM∗1,i = 0 if πd̄/p1 < 1/q1, and he will be indifferent

between investing in the safe and risky assets if πd̄/p1 = 1/q1. The manager’s portfolio choice at

t = 1 is independent of his own wealth and of the amount investors invest with him.

4.1.2 Investor’s problem at t=1

An investor’s portfolio decision in period 1 depends on the behavior he anticipates for his manager,

which, in turn, depends only on the state π. An investor with wealth W I
1 who anticipates his

manager will choose aM1,i chooses a
I
1 to solve

max
aI1,i∈[0,1]

Ed
[

log

((
aI1,i (1− f)

(
aM1,i

d

p1
+
(
1− aM1,i

) 1

q1

)
+
(
1− aI1,i

) 1

q1

)
W I

1

)∣∣∣∣π]
An investor will never invest with a manager who only invests in the safe asset. If he did, he would

be paying fees for something he could do himself. Therefore, investors will choose not to invest

with their manager if πd̄/p1 ≤ 1/q1. Furthermore, they will only invest with their manager if the

expected return of doing so is greater than the return of the safe asset, i.e., if π (1− f) d̄/p1 > 1/q1.

Therefore, the optimal portfolio choice for investors is

aI1,i (p1, π) =
max

{
π (1− f) d̄

p1
− 1

q1
, 0
}

(1− f) d̄
p1
− 1

q1

.

As it is usual with CRRA preferences, the share of wealth invested with the manager is inde-

pendent of the wealth level. As I mentioned above, this assumption makes the problem easier to

track. To keep notation simple, I will define Ai0,i ≡ aI0,iW I
0 and A

I
1,i (p1, π) ≡ aI1,i (p1, π)W I

1,i (p1) .

4.1.3 Demand for risky assets at t=1

The demand for the risky asset at t = 1 of an individual manager i with wealth WM
1,i (p1) is

Di (p1, π) =

 aM1,i (p1, π)
(
AI1,i (p1, π) +WM

1,i (p1)
)
/p1 if the fund continues

aM1,i (p1, π)WM
1,i (p1) /p1 if the fund is liquidated

13



where W I
1,i (p1) is the wealth level for manager i′s investor when the price is p1.

14 If the fund

continues at t = 1, the manager will manage his own wealth and whatever his investor gives him,

AI1 (p1, π) . If the fund is liquidated, a manger will only manage his own wealth.

Given these individual demands for the risky asset, the equilibrium liquidation price p∗1 (π) will

be such that

p∗1 (π)

∫ [
Di (p∗1 (π) , π)− aM0, i

(
aI0,iW

I
0 +WM

0

)
/p0

]
di = 0

where the last term inside brackets is the supply of the risky asset which is fixed and equal to the

total amount traded at t = 0.

The wealth levels of managers and investors will depend, not only on whether the fund continues,

but also on whether sponsor support is offered. Therefore, to compute the equilibrium price as a

function of π one needs to consider four possible cases: π such that no sponsor support is needed, π

such that all sponsors offer support if needed, π such that sponsors offer support with probability

s when needed, and π such that sponsor support is needed to prevent the liquidation of the fund,

but it is not provided. Then,

p∗1 (π) =



pNS1 (π) if no support is needed

pS1 (π) if sponsors offer support always s∗ (π) = 1

pSS1 (π) if sponsors offer support with probability s∗ (π) ∈ (0, 1)

pL1 (π) if support is needed but not offered

.

Characterizations of the price functions pNS1 (π), pS1 (π), pSS1 (π), and pL1 (π) can be found in the

appendix.

4.1.4 Equilibrium Support Decision

In a symmetric equilibrium, all managers will choose the same support strategy and the same

portfolios. Therefore, if the manager does not need to offer support the relevant price is pNS1 , if he

strictly prefers to offer support it is pS , if he is indifferent between offering support and liquidating

the fund it is pSS1 (π), and if the fund is liquidated it is pL. Taking this into consideration, the

equilibrium aggregate support and liquidation decisions are calculated as follows.

A manager’s support decision will depend on the equilibrium price through the market value of

the shares or net asset value (NAV). The net asset value, n
(
p1, a

M
0

)
, is the return on the portfolio

14Expressions for these wealth levels can be found in the appendix.

14



of a manager who chose to invest a fraction aM0 of the fund in the risky asset when the liquidation

price of the risky asset is p1, i.e., n
(
p1, a

M
0

)
= aM0 p1/p0 +

(
1− aM0

)
/q0. As long as n

(
p1, a

M
0

)
≥ x,

the manager will not have any need to offer support.

Proposition 1 Given a portfolio choice for managers at t = 0 aM0 , there exists a threshold πx
(
aM0
)

such that in a symmetric equilibrium managers will not need to offer support to investors if π ≥

πx
(
aM0
)
.

The proof of this proposition follows from the fact that the relevant price function when no

support is offered is pNS1 (π) and from monotonicity of pNS1 (π) in π.

If support is needed for a fund to continue,i.e., if π < πx
(
aM0
)
, given p1 a manager will make

his support decision to solve

max
s∈[0,1]

πd̄

p1

(
n
(
p1, a

M
0

) (
WM

0 + fAI0
)

+ E
)

+ (1− s) (−Bπ)

+s
πd̄

p1

(
fAI1 (p1, π)−

(
x− n

(
p1, a

M
0

))
(1− f)AI0

)
s.t.

n
(
p1, a

M
0

) (
WM

0 + fAI0
)

+ E + fAI1 (p1, π) ≥
(
x− n

(
p1, a

M
0

))
(1− f)AI0, (1)

where s (π) is the probability with which a manager chooses to offer support in state π. If the

manager offers support in state π, he invests the value of his shares, n
(
p1, a

M
0

) (
WM

0 + fAI0
)
, his

endowment in period 1, E, the incoming fees from keeping the fund open, fAI1, minus the cost of

offering support,
(
x− n

(
p1, a

M
0

))
(1− f)AI0. The expected return of this investment is πd̄/p1 (π)

since p1 (π) ≤ πd̄q1. If he does not offer support he invests the return on his shares in the fund and

his endowment but he suffers a loss Bπ from liquidating the fund early. The amount of support

a manager can offer is determined by the amount of resources he has available at t = 1. This is

captured by constraint (1).

The maximization presented above implies that the manager will choose to offer support to the

his investor if the benefit of offering support offsets the costs of doing so. That is if support is

needed and

πd̄

p1 (π)

((
x− n

(
p1 (π) , aM0

))
(1− f)AI0 − fAI1 (p1 (π) , π)

)
≤ min

{
Bπ,

πd̄

p1 (π)

(
n
(
p1

(
π, aM0

)
, aM0

) (
WM

0 + fAI0
)

+ E
)}

. (2)
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The left hand side of this expression represents the opportunity cost of offering support to the

investor, net of incoming fees. The right hand side includes both the manager’s willingness and

ability to offer support. The first term inside the curly brackets captures the manager’s willingness

to offer support. Since the manager loses Bπ if the fund is liquidated early, he will be willing to offer

support, on top of the incoming fees, up to an amount equal to his loss, i.e., Bπ. The second term,

captures the manager’s ability to offer support. The manager will only be able to offer support up

to the amount of resources he owns. To offer support, the manager has to be both willing and able

to offer support. This is captured by the minimum operator.

Proposition 2 Given a portfolio choice for managers at t = 0 aM0 , there exists a threshold π
∗ (aM0 )

such that there is a symmetric equilibrium in which all managers offer support, i.e., s∗ (π) = 1 iff

π∗
(
aM∗0

)
≤ π < πx

(
aM∗0

)
.

Proposition 3 Given a portfolio choice for managers at t = 0 aM0 , there exists a threshold

π∗∗
(
aM0
)
such that there is a symmetric equilibrium in which all managers choose not to offer

support, i.e., s∗ (π) = 0 iff π ∈
[
πx
(
aM∗0

)
, π̄
]
∪
[
π, π∗∗

(
aM0
))
.

The proof of these propositions relies on the monotonicity and affi nity of pS1 (π) and pL1 (π) in

π. The appendix characterizes the thresholds πx
(
aM0
)
, π∗

(
aM0
)
, and π∗∗

(
aM0
)
, and using these

characterizations, the following proposition can be shown.

Corollary 1 If π∗
(
aM0
)
< π∗∗

(
aM0
)
there are multiple equilibria when π ∈

[
π∗
(
aM0
)
, π∗∗

(
aM0
)]
.

In particular, there is an equilibrium in which all managers offer support, one in which all managers

choose not to offer support, and one in which managers choose to offer support with probability

s ∈ (0, 1).

The corollary follows from propositions 2 and 3. If all managers choose (not) to offer support,

the net demand for the risky asset is high (low) and the equilibrium liquidation price for the risky

asset is high (low). Given this high (low) price, the cost of offering support is low (high) for

an individual manager and, thus, he has more (less) incentives to offer support. This strategic

complementarity between the managers support decision through the equilibrium liquidation price

of the asset is only present in the model because support is voluntary. For the remainder of this

paper, I will assume that whenever there are multiple equilibria, managers will coordinate in the

equilibrium in which all managers offer support.
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Proposition 4 If π∗∗
(
aM0
)
< π∗

(
aM0
)
there is a unique equilibrium for each realization of π and

s (π) ∈ (0, 1) for π ∈
(
π∗∗

(
aM0
)
, π∗

(
aM0
))
.

If there is a unique equilibrium for all values of π, i.e., if π∗∗ ≤ π∗, managers may choose to offer

support with probability s ∈ (0, 1) for π ∈ (π∗∗, π∗) . For these values of π, an individual manager

chooses to offer support when he expects no other manager to offer support and he chooses not to

offer support when he expects all other managers to offer support. Therefore, there is no symmetric

equilibrium in pure strategies for the support decision. Nevertheless, there is an equilibrium for

these values of π in which managers are indifferent between offering support and not doing so if

they expect all other managers to offer support with positive probability but not for sure and,

therefore, he finds it optimal to do follow the same strategy the other managers follow.

Runs on the risky asset market The managers’support decisions determine the demand for

the risky asset in the interim period and, through it, the liquidation price of the risky asset. If a

manager chooses not to offer support when support is needed to keep the fund open, his fund breaks

the buck and is liquidated. Upon liquidation, the manager cannot offer intermediation services at

t = 1 and his investor is excluded from the risky asset market. This implies that the manager’s

demand for the risky asset is going to be lower if he chooses not to offer support than if he keeps

the fund open and manages funds for his investor.15 If all managers choose not to offer support,

the total demand for the risky asset in the interim period and, therefore, the liquidation price of

the risky asset will be lower than if all funds remain open.

Moreover, the managers’support decisions depend on the liquidation price of the risky asset.

This liquidation price will determine the costs and the benefits of offering support (as one can see

from (2)). To illustrate this mechanism, suppose there are no spillover losses, i.e., B = 0. On the

one hand, a low liquidation price of the risky asset translates into a low NAV and a high cost of

offering support. On the other hand, a low price of the risky asset also implies a high expected

return of investing in the risky asset and increases investors’incentives to invest with managers.

A higher volume of intermediation increases the fees earned by the managers and the benefits of

offering support and avoiding the liquidation of the fund. If the increase in the cost dominates

the increase in the benefit of offering support, there may be strategic complementarities in the

15Assuming that the amount of support does not exceed the total amount investors invest with their managers if

they receive support.
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managers’support decisions and multiple equilibria may arise.16 As seen from corollary 1, these

complementarities arise when π∗ < π∗∗.

When π∗ < π∗∗, if an individual manager expects all other managers (not) to offer support and

liquidate their funds, he expects a high (low) demand for the risky asset in the interim period, a

high (low) liquidation price of the risky asset, and a low (high) cost of offering support which will

increase (decrease) the manager’s incentives to offer support. This source of complementarity gives

rise to self-fulfilling equilibria that may lead to runs on the risky asset market. These runs are

different from the classical bank runs: they are not runs of investors on intermediaries but runs of

intermediaries on each other through the risky asset market and fire sales.17 In this model, runs on

the asset market are not driven by liquidity shocks; they are self-fulfilling.

4.1.5 Equilibrium price

Given the equilibrium support decision for the managers and the portfolio choice aM0 one can

compute the equilibrium liquidation price of the risky asset.

Assumption B is such that the amount of support offered does not exceed the total amount

investors invest with their manager if they receive support, i.e.,

AI1 < fAI1 + min

{
B
pL1
d̄
, n
(
pL1 , a

M
0

) (
WM

0 + fAI0
)

+ E

}
.

This assumption holds for B = 0 and for values of B low enough. Moreover, it implies that the

demand for the risky asset is lower when sponsors decide not to offer support than when they do

and it guarantees the monotonicity of the price function.18 For the remainder of the paper, I will

assume this assumption holds.

Proposition 5 Under assumption 4.1.5, the price function p∗1
(
π, aM0

)
is non-decreasing in π for

all π ∈ [π, π̄].

The liquidation price of the risky asset will be higher the higher the probability of success π. A

higher realization of π implies a higher expected return of investing in the risky asset and a higher

16This will be the case when investors are not very responsive to changes in yield.
17The possibility of fire sales arises due to the cash in the market pricing in the risky asset market as in Allen and

Gale (1994). See Shelifer and Vishny (2011) for a review of fire sales in the finance and macroeconomics literature.
18This assumption doesn’t seem unrealistic. Between 2007 and 2010, the maximum amount of support offered by

a sponsor accounted for 3% of the fund.
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Figure 4: The red solid line is the liquidation price of the risky asset at t = 1 as a function of π. The black

dotted line is the expected discounted dividend payed by the risky asset.

demand for it. Since the supply of the risky asset at t = 1 is fixed, the equilibrium price has to

increase with π for the market to clear.

Figure 4 depicts the price function when (a) π∗∗ < π∗ and when (b) π∗ < π∗∗ (assuming that

the support equilibrium is played whenever there are multiple equilibria). When all funds are

liquidated, i.e., π < min {π∗∗, π∗}, only managers participate in the risky asset market. Since

managers are risk neutral, they will either invest everything they have in the risky asset or they

will be indifferent between investing in the risky asset and in the safe asset. If the demand for the

risky asset is determined by the cash held by managers, i.e., by
(
1− aM0

) (
WM

0 + fAI0
)

+ E, the

market clearing price will be given by pL1 , where(
1− aM0

) (
WM

0 + fAI0
)

+ E

pL1
= (1− f) aM0 AI0 (3)

where the right hand side is the amount of risky asset held by investors indirectly through their

shares. Moreover, in equilibrium p∗1 (π) ≤ d̄πq1 otherwise the demand for the risky asset at t = 1

would be 0 and the market would not clear since the supply of the risky asset at t = 1 is fixed

and positive. Thus, if the funds are liquidated, the equilibrium liquidation price will be p∗1 (π) =

min
{
d̄πq1, p

L
1

}
. If p∗1 (π) = d̄πq1 when liquidation occurs, aM1 (p1, π) adjusts to clear the market.

If at least some funds continue operating at t = 1, i.e., π ≥ min {π∗∗, π∗}, investors can invest

in the risky asset, albeit indirectly. In this case, the demand for the risky asset also depends on the

investors’propensity to invest with their managers, aI1 (p1, π). Since this propensity is increasing

in π, the demand for the risky asset is increasing in π, and so is the equilibrium liquidation price

of the risky asset.
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When π∗ < π∗∗ there may be a jump in the price function at π∗ which captures the sharp

decrease in the demand for the risky asset: for π > π∗ all funds are open whereas for π < π∗ all

funds are liquidated.

4.1.6 Individual support decisions

In order to characterize the manager’s problem completely at t = 0, one needs to understand the

individual manager’s support decision and how this decision depends on the manager’s portfolio

choice in the initial period.

Proposition 6 There exist unique thresholds πx,i
(
aM0,i

)
and π∗i

(
aM0,i

)
such that a manager i will

strictly prefer to offer support, iff π ∈
(
π∗i

(
aM0,i

)
, πx,i

(
aM0,i

))
.

The proof of this proposition follows from the monotonicity of the price function and can be

found in the appendix. The intuition for this result is analogous to the one presented for the

aggregate thresholds πx and π∗.

4.2 t=0

4.2.1 Investor’s problem

An investor will make his portfolio choice at t = 0 to maximize his expected utility anticipating the

equilibrium that will be played at t = 1 for each realization of π, and taking his manager’s portfolio

choices and prices as given.

An investor with manager i solves

max
aI0∈[0,1]

Eπ
[
log
(
W I

2

(
aI0; aM0i , π

∗
i , πx,i, s̄ (π) , π

))]
where s̄i (π) ∈ {0, 1} is a manager’s realized support decision and W I

2

(
aI0; ·

)
is his wealth at t = 2.

This wealth depends on the investor’s portfolio choice at t = 0, on manager i’s portfolio choice at

t = 0 and support decisions at t = 1, and on the realized quality of the long term asset, π. The

investor’s problem is concave in aI0 and has a unique solution.

4.2.2 Manager’s problem

Since for π < π∗
(
aM0
)
the manager either prefers not to offer support or is indifferent between

offering support and not doing so, I can solve the manager’s problem by assuming that he will
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liquidate the fund if π < π∗
(
aM0
)
. Then, manager i solves VM

0

(
WM

0 ; f
)

=

max
aM0,i∈[0,1]

Eπ
(
WM

2

(
aM0,i;πx,i

(
aM0,i
)
, π∗i

(
aM0,i
)
, aI0, π

))
− Eπ

(
1
{
π ≤ π∗i

(
aM0,i
)}
Bπ
)

where 1 is the indicator function, and WM
2

(
aM0,i; ·

)
is the manager’s wealth at t = 2. WM

2 depends

on the manager’s portfolio choice at t = 0 directly, and indirectly through the support thresholds.

Moreover, it depends on the investor’s portfolio choice at t = 0 and on π. The manager makes his

portfolio choice taking his investor’s decisions and prices as given.

As it is usual in the presence of threshold decisions, the manager’s objective function is not

well-behaved. The liquidation rule and the possibility of offering support change the manager’s

attitude towards risk for different portfolio choices, aM0,i, from risk neutral to risk averse to risk

lover. Nevertheless, the manager’s problem can be fully characterized. There are two possible

candidates at which the maximum could be attained: the highest aM0,i such that there is no risk

of liquidating the fund, and aM0 = 1. To avoid dealing with cases, I will use numerical examples

in the policy section to illustrate the mechanisms at play. The manager’s objective function is

characterized in the appendix as is WM
2 .

4.2.3 Risky asset market at t=0

The equilibrium price in the risky asset market at t = 0, p∗0, is determined by

S (p∗0) =
aM0
p∗0

(
WM

0 +AI0
)

where the right hand side is the total amount invested in the risky asset at t = 0, i.e., the fraction

that managers choose to invest in the risky asset, aM0 , times the size of the funds, W
M
0 + aI0W

I
0 ,

divided by the price of the risky asset, p0.

4.2.4 Equilibrium fees

Finally, to close the model, the equilibrium fees are determined by the indifference condition for

managers. If a manager chooses to open a fund, he incurs in operating costs C > 0 and gets utility

VM
0

(
WM

0 ; f∗
)
. If he chooses not to open a fund, he invests his own wealth to maximize his utility.

Therefore, in equilibrium, intermediation fees f∗ are such that

VM
0

(
WM

0 ; f∗
)
− C = max

a∈[0,1]

∫ π̄

π

(
πd̄
p∗1(π)

((
a
(
p∗1(π)
p0
− 1

q0

)
+ 1

q0

)
WM

0 + E
))

dπ.
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5 Results

As I mentioned above, the equilibrium at t = 1 can be characterized in closed form for any t = 0

choices, but the managers’problem at t = 0 is not well-behaved. In this section I provide theoretical

results for the special case in which B = 0. The appendix contains numerical examples for cases in

which B > 0 that illustrate the mechanisms at play. The proofs for all propositions in this section

are in the appendix.

Proposition 7 If B = 0, aM∗0 = 1 in a symmetric equilibrium.

Increasing the position in the risky asset has the following three effects for the manager: it

increases the expected return on the manager’s wealth, it increases the expected collected fees from

intermediation at t = 1, and it also increases the probability of breaking the buck. Without any

extra cost from liquidating the fund early other than the forgone fees, in equilibrium, the benefits

from taking risk offset the costs, and managers are better off taking as much risk as they can. This

is shown in proposition 7.

The model is consistent with several stylized facts documented in the literature. Chernenko and

Sunderam (2012), Christoffersen and Musto (2002), and Kacperczyk and Schnabl (2013) document

a strong performance-flow relation in the MMF industry: they show that inflows to MMFs are

highly responsive to the funds’past returns. As shown in the next proposition, the model developed

in this paper is consistent with this finding.

Proposition 8 The amount of assets managed for investors at t = 1, AI1, is increasing in the net

asset value, n
(
p1, a

M
0

)
.

The total amount investors invest with managers at t = 1, AI1, is a stock and it is correlated 1

to 1 with the flow into the funds, which is given by AI1 (π)−AI0. Moreover, the funds’performance

is measured by the return on the investors’shares, which is n
(
p1, a

M
0

)
when no support is offered,

and x otherwise. Therefore, the proposition above shows that the model captures the positive

performance-flow relation present in the data.

Moreover, Kacperczyk and Schnabl (2013), using data from 2007 to 2010, document that MMFs

sponsored by companies that also offered non-money market mutual funds and other financial

services took on less risk. The next proposition is consistent with this stylized fact.
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Proposition 9 Suppose B = 0 for all managers but for manager j. Then, in equilibrium, the risk

taken by manager j at t = 0 will be decreasing in Bj and he will choose aM0 ,j ∈
{
aMS

0 , 1
}
where

aMS
0 = max aM0,i s.t. πx,i

(
aM0,i

)
= π.

Larger Bj implies a higher cost of liquidating the fund early for the manager. Investing in the

risky asset has two effects on the manager’s expected wealth. On one hand, a higher exposure

to the risky asset increases the manager’s portfolio expected return and, from proposition 8, the

expected fees collected from managing the investor’s funds at t = 1. On the other hand, a higher

aM0,j increases the probability of early liquidation of the fund which increases the expected losses

suffered by the manager due to this early liquidation. When B = 0, the latter effect is not present

and the manager is always better off by investing everything in the risky asset. If Bj is high enough,

the loss from breaking the buck is too high and managers are better off choosing a portfolio such

that the fund is never liquidated early. In this last case, managers prefers to forgo expected return

to avoid losses from breaking the buck, which are too high.

6 Policy analysis: Floating vs. Stable NAV

The main regulation proposed by the SEC is to abandon the stable NAV in favor of a floating one.

Adopting a floating NAV would diminish the risk of sudden redemptions by making MMFs like any

other mutual fund and by eliminating the possibility of breaking the buck.

In the context of the model developed in this paper, going from a stable to a floating NAV

system is equivalent to going from x > 0 to x = 0. If x = 0, the funds managed by the managers

become regular mutual funds and there is no breaking the buck rule. In this case, no support is

ever offered: 1 unit transferred to investors represents faI1 < 1 worth of fees for the manager. The

manager does not have any incentive to offer support.

The portfolio decisions at t = 1 presented in the benchmark model are independent on x, and,

thus, remain unchanged when going from x > 0 to x = 0. In terms of the thresholds presented in

the previous section, πx,i
(
aM0,i; a

M
0

)
= π∗i

(
aM0,i; a

M
0

)
= 0 for all

(
aM0,i; a

M
0

)
∈ [0, 1]2 when x = 0.

The manager’s problem at t = 1 now becomes

max
aM0,i∈[0,1]

Eπ
[

πd̄

p∗1 (π)

(
n
(
p1 (π) , aM0,i

) (
WM

0 + faI0W
I
0

)
+ E

)]
+Eπ

[
πd̄

p∗1 (π)
faI∗1 (π)

(
n
(
p1 (π) , aM0,i

)
(1− f) +

(
1− aI∗0

) 1

q0

)
W I

0

]
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This implies that there is no downside to taking risk, and therefore aM∗f0 = 1.

The payoff for investors from investing with the manager is affected in many different ways. If

all decisions at t = 0 remained unchanged and the liquidation price of the risky asset was kept fixed,

investors would lose insurance going from a stable NAV system to a floating one, i.e., they would

lose the transfer they were receiving from their managers in all the states in which support was

offered. Figure 5 illustrates this argument. However, when all funds go from a stable to a floating

NAV system, the liquidation price of the risky asset changes. In particular, keeping all decisions

at t = 0 unchanged, the equilibrium liquidation price of the risky asset is (weakly) higher when

x = 0. To see this, first note that the demand for the risky asset increases in those states in which

some support was offered when x > 0. When support is offered, for each unit managers transfer

to investors, only a fraction aI1 goes to the risky asset market, whereas if managers kept this for

themselves they would invest it all in the risky asset. Moreover, for those states in which the fund

was liquidated but investors would still have liked to invest in the risky asset via the managers,

demand also goes up. When x > 0, they were prevented from investing because the funds were

closed, but now they can do so. These effects drive the demand for the risky asset up, and increase

the equilibrium liquidation price. This change is illustrated in figure 6.

Therefore, when one considers the change in the liquidation price of the risky asset, one can

see that investors prefer x > 0 in those states in which support is offered with high probability but

are better off when x = 0 in the states in which the fund is very likely to be liquidated. Figure 7

illustrates this tradeoff.

So far, this analysis keeps all decisions at t = 0 fixed. Figure 8 compares the equilibria for

different values of WM
0 for x > 0 and x = 0. When going from a stable to a floating NAV system,

managers need to be compensated less to offer intermediation services because they don’t risk facing

losses B. Putting this together with the partial equilibrium analysis presented above, one can see

that there are countervailing effects on the incentives for investors to invest with managers. In

the example computed here, both the risk and the expected return of investing with a manager go

down for investors. What happens with the total amount intermediated depends on which effect

is larger. In the example shown here, the intermediation level, and thus the supply of liquidity,

increase when going from a stable to a floating NAV.

Finally, I show welfare levels for managers and investors measured in consumption equivalent.

In this example managers are worse off when adopting a floating NAV while investors are better

off. This is consistent with the industry opposing abandoning the stable NAV and the SEC arguing
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Figure 5: Investor’s payoff: The solid (dotted) line represents the payoff for an investor who invests with a

manager that offers (does not offer) support when everyone else is offering support. Suport is offered for all

values of π between the vertical dotted lines.

for it.

7 Conclusion

In this paper, I developed a novel model of MMFs. The model incorporates several features that

are characteristic of MMFs: the ability of investors to redeem their shares on demand, the stability

of the NAV and the provision of sponsor support, the liquidation of the funds after breaking the

buck, and the fluctuation in the value of the funds’assets.

The model shows that, even in the absence of investor driven runs, the MMF industry may

be fragile. MMFs may subject to a source of fragility that differs from the canonical bank runs:

there may be strategic complementarities in the sponsors’support decisions that may give rise to

multiple equilibria and to runs of the MMFs on the asset market.

The mechanism behind the runs described in this paper is particularly relevant in the MMF

industry but it may also be present, for example, in situations in which the absence of recapital-

ization may lead to the liquidation of assets and, in turn, to firesales. A clear example of this is

the banking industry. If there is no recapitalization after a negative shock to the value of banks’

assets, banks may be forced to liquidate assets to meet depositor redemptions. This, in turn, would

increase the downward pressure on the asset price and, in fact, make recapitalization too costly

to be undertaken. In this example, recapitalization plays the role of sponsor support in the MMF

industry described in this paper.
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Figure 6: Liquidation price of the risky asset when going from a stable NAV (x > 0) to a floating NAV

(x = 0) fixing all decisions at t = 0.

Figure 7: Payoff for investors from investing with a manager when going from a stable NAV (x > 0) to a

floating NAV (x = 0) fixing all decisions at t = 0.
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This model is consistent with stylized facts documented in the literature on MMFs. It captures

the positive performance-flow sensitivity in the MMF industry and the difference in incentives for

risk taking for funds with different sponsors. In particular, it is consistent with the fact that MMFs

sponsored by companies that also offer non-money market mutual funds and other financial services

tend to take on less risk.

Finally, I use the model to analyze the tradeoffs involved in the adoption of a floating NAV.

The consequences of this regulation depend on the interaction between potentially countervailing

effects. Changing the institutional setup of the MMF industry would affect the risks and returns of

intermediation for investors and MMF managers not only directly, but also through the change in

equilibrium outcomes such as intermediation fees, the sponsors’support decision, and asset prices.

The model allows me to take into account these general equilibrium effects, which seem particularly

important given the relative size of the MMF industry in the market for short term financing.

In an example, I show that adopting a floating NAV drives down both the risk and the return

of investing in a MMF for investors. Contrary to what one may think at first, the overall effect on

the intermediation level is positive, and, thus, in these examples, if MMFs were forced to adopt a

floating NAV the provision of liquidity in the money market would increase. This highlights the

usefulness of looking at the policy discussion through the lens of a model.

References

Allen, F., and D. Gale (1994): “Limited Participation and Volatility of Asset Prices,” The
American Economics Review, 84 (4), 933—955.

(2005): “From Cash-in-the-Market Pricing to Financial Fragility,”Journal of the European
Economic Association, 3 (2-3), 535—546.

Bernardo, A. E., and I. Welch (2004): “Liquidity and Financial Market Runs,” Quarterly
Journal of Economics, February, 135 —158.

Bhattacharya, S., and P. Pfleiderer (1985): “Delegated portfolio management,”Journal of
Economic Theory, 36(1), 1—25.

Board of Governors of the Federal Reserve System (2009): “Monetary Policy Report
to the Congress,”24 February 2009.

Brady, S. A., K. E. Anadu, and N. R. Cooper (2012): “The Stability of Prime Money Market
Mutual Funds: Sponsor Support from 2007 to 2011,”Federal Reserve Bank of Boston, Risk and
Policy Analysis Working Papers, RPA 12-3.

Carnell, R. S., J. R. Macey, and G. P. Miller (2008): The Law of Banking and Financial
Institutions. Aspen Publishers.

28



Chen, Q., I. Goldstein, andW. Jiang (2010): “Payoffcomplementarities and financial fragility:
Evidence from mutual fund outflows,”Journal of Financial Economics, 97, 239—262.

Chernenko, S., and A. Sunderam (2012): “Frictions in Shadow Banking: Evidence from the
Lending Behavior of Money Market Funds,”mimeo.

Christoffersen, S. E. K., and D. K. Musto (2002): “Demand curves and the pricing of money
management,”Review of Financial Studies, 15, 1499—1524.

Diamond, D. W., and P. H. Dybvig (1983): “Bank Runs, Deposit Insurance, and Liquidity,”
Journal of Political Economy, 91(3), 401—419.

Ennis, H. M. (2012): “Some Theoretical Considerations Regarding Net Asset Values for Money
Market Funds,”Economic Quarterly, Forth quarter.

Financial Stability Oversight Council (FSOC) (2011): “Annual Report,”.

Fisch, J., and E. Roiter (2011): “A Floating NAV for Money Market Funds: Fix or Fantasy?,”
Scholarship at Penn Law., Paper 390.

Hanson, S. G., D. S. Scharfstein, and A. Sunderam (2012): “An Evaluation of Money
Market Fund Reform Proposals,”mimeo.

He, Z., and A. Krishnamurthy (2012): “A Model of Capital and Crises,”The Reveiw of Eco-
nomics Studies, 79 (2), 735—777.

Investment Company Institute (ICI) (2013): “2013 Investment Company Fact Book,”.

Kacperczyk, M., and P. Schnabl (2013): “How Safe are Money Market Funds?,”Quarterly
Journal of Economics, pp. 1073—1122.

Lacker, J. M. (2011): “Letter to the Securities and Exchange Commission re: File No. 4-619;
Release No. IC-29497 PresidentŠs Working Group Report on Money Market Fund Reform,”10
January 2011.

Lorenzoni, G. (2008): “Ineffi cient Credit Booms,”Review of Economic Studies, 75 (3), 809—833.

Mackenzie, M. (2011): “Prospect of shortage drives US T-bill yields down,” Financial Times,
May 3, 2011.

McCabe, P. (2010): “The Cross Section of Money Market Fund Risks and Financial Crises,”
Federal Reserve Board Finance and Economics Discussion Series, Working Paper 2010-51.

(2011): “An A-/B- Capital Buffer Proposal for Money Market Funds,”mimeo.

McCabe, P., M. Cipriani, M. Holscher, and A. Martin (2012): “The Minimum Balance
at Risk: A Proposal to Mitigate the Systemic Risks Posed by Money Market Funds,” Federal
Reserve Bank of New York Staff Reports, Staff Report No. 564.

Mendelson, S., and R. Hoerner (2011): “BlackRock letter to the Securities and Exchange
Commission re: Release No. IC-29497; File No. 4-619,”10 January 2011.

Moody’s Investors Service (2010): “Sponsor Support Key to money Market Funds,”8 August
2010.

29



President’s Working Group on Financial Markets (PWG) (2010): “Report of the Presi-
dent’s Working Group on Financial Markets: Money Market Fund Reform Options,”.

Schmidt, L., A. Timmermann, and R. Wermers (2013): “Runs on Money Market Mutual
Funds,”mimeo.

Shelifer, A., and R. Vishny (2011): “Fire Sales in Finances and Macroeconomics,”Journal of
Economic Perspectives, 25 (1), 29—48.

Squam Lake Group (2011): “Reforming Money Market Funds,”January 14, 2011.

U.S. Securities and Exchange Commission (2009): “Securities and Exchange Commission v.
Reserve Management Company, Inc. et al.,”8 June 2009, Case 1:09—cv—04346—PGG.

Volcker, P. A. (2011): “Letter to the Securities and Exchange Commission re: File No. 4-619;
Release No. IC-29497 President’s Working Group Report on Money Market Fund Reform,” 11
February 2011.

30



8 Appendix

8.1 Equilibrium threshold characterization

This section finds closed form solutions for the thresholds πx
(
aM0
)
and π∗

(
aM0
)
.

πx
(
aM0
)
is given by

pNS1

(
πx
(
aM0
))

p0
aM0 +

(
1− aM0

) 1

q0
= x.

using that pNS1

(
πx
(
aM0
))

= pS1
(
πx
(
aM0
))
and the definition of pS1 (π),

πx
(
aM0
)

=


((
x− 1

q0

)
+ aM0

1
q0

)
p0

aM0

(1−aIS1 )
d̄(1−f)q1

+ aIS1 aIS1 > 0((
x− 1

q0

)
+ aM0

1
q0

)
p0

aM0

1
d̄q1

else
.

The equilibrium support threshold is determined by

π∗d̄

pS1 (π∗)

((
x− n

(
pS1 (π∗) , aM0

))
(1− f)AI0 − fAI1

(
pS1 (π∗) , π∗

))
= min

{
Bπ∗,

π∗d̄

pS1 (π∗)
n
(
pS1 (π∗) , aM0

) (
WM

0 + fAI0
)

+ E

}
.

Then, π∗
(
aM0
)
is determined by (

pS1
(
π∗
(
aM0
))

=



(
(1−faIS1 )x(1−f)aI0−faIS1

(1−aI0)
q0

−(1−aM0 )
q0

(1−f)aI0

)
W I

0

B
d̄

+
aM0
P0

(1−f)aI0W
I
0

χ
(
aM0
)

= 1(
(1−faIS1 )x(1−f)aI0−faIS1

(1−aI0)
q0

)
W I

0−
(1−aM0 )

q0
(WM

0 +aI0W
I
0 )−E

aM0
P0

(WM
0 +aI0W

I
0 )

χ
(
aM0
)

= 0

where aIS1 = 0 if pS1
(
π∗
(
aM0
))

= d̄π∗
(
aM0
)
q1 and

χ
(
aM0
)

= 1

{
B

d̄
pS1
(
π∗
(
aM0
)
, aM0

)
<
(
n
(
pS1
(
π∗
(
aM0
)
, aM0

)
, aM0

) (
WM

0 + faI∗0 W
I
0

)
+ E

)}
.

Finally, π∗∗
(
aM0
)
is given by

π∗∗d̄

pL1 (π∗∗)

((
x− n

(
pL1 (π∗∗) , aM0

))
(1− f)AI0 − fAI1

(
pL1 (π∗∗) , π∗∗

))
= min

{
Bπ∗∗,

π∗∗d̄

pL1 (π∗∗)
n
(
pL1 (π∗∗) , aM0

) (
WM

0 + fAI0
)

+ E

}
.

Proposition 10 The thresholds πx
(
aM0
)
, π∗

(
aM0
)
, and π∗∗

(
aM0
)
are increasing in aM0 .

The net asset value, n
(
p1, a

M
0

)
, is decreasing in aM0 for all p1 < p0/q0. Since x < 1

q0
by

assumption, pS1 (π) < p0/q0 for all π < πx
(
aM0
)
, i.e., when support is needed. Therefore, the higher
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the exposure to the risky asset at t = 0, the lower the net asset value when support is needed for

any given price. This implies that a higher aM0 requires a higher liquidation price for the manager

not to need to offer support. Since the price function is increasing in π for π ≥ πx
(
aM0
)
, higher aM0

requires higher realizations of π not to need to offer support, i.e., a higher πx. The same argument

can be applied to the thresholds π∗ and π∗∗.

The following proposition characterizes the support region, and shows that managers will offer

support in some states π as long as they have something to lose from closing the fund, either from

forgone fees of from spillover losses.

Proposition 11 π∗
(
aM0
)
≤ πx

(
aM0
)
and π∗

(
aM0
)
< πx

(
aM0
)
iff

AI1
(
p1

(
πx
(
aM0
))
, πx

(
aM0
))
> 0 or B > 0.

Proof. From the definition of πx
(
aM0
)
it is easy to see that (2) always holds for πx

(
aM0
)
. Therefore

πx
(
aM0
)
≥ π∗

(
aM0
)
. Moreover, if AI1

(
p1

(
πx
(
aM0
))
, πx

(
aM0
))
or B > 0, (2) holds with strict

inequality at πx
(
aM0
)
which implies that πx

(
aM0
)
> π∗

(
aM0
)
.

8.2 Equilibrium Price

When the return on the manager’s portfolio is above x, no support is needed to keep the fund

operating. In this case, if aI∗1 is interior, the equilibrium price is

pNS1 (π) = min


(1−f)d̄

(
π((1−aM0 )(1−f)aI0+(1−aI0))

1
q0
W I

0 +(1−aM0 ) 1
q0

(WM
0 +faI0W

I
0 )+E

)
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p0
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0 + 1

q1

1
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((1−aI0)W I
0 +(1−aM0 )(WM

0 +aI0W
I
0 ))+ E

q1

, d̄πq1

 .

If support is provided by the manager, and aI∗1 is interior, the equilibrium price, pS1 (π) , is

determined by (
x (1− f) aI0W

I
0 −

(
1− aM0

) 1

q0

(
WM

0 + aI0W
I
0

)
− E

)
= aI∗1 (p1 (π) , π)

(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0 .

If x (1− f) aI0W
I
0 −

(
1− aM0

)
1
q0

(
WM

0 + aI0W
I
0

)
−E < 0, there is an excess demand for the risky

asset at every price p1 (π) < d̄πq1. Therefore, in this case, p1 (π) = d̄πq1, aI∗1 (p1 (π) , π) = 0 and

the share invested by managers in the risky asset, āM1 (π) , is given by

0 =
(
1− āM1 (π)

) d̄πq1

p0
aM0
(
WM

0 + aI0W
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0
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) 1
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.
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If x (1− f) aI0W
I
0 −

(
1− aM0

)
1
q0

(
WM

0 + aI0W
I
0

)
− E > 0 the equilibrium price is given by

aI∗1 (p1 (π) , π) =

(
x (1− f) aI0W

I
0 −

(
1− aM0

)
1
q0

(
WM

0 + aI0W
I
0

)
− E

)
(
x (1− f) aI0 +

(
1− aI0

)
1
q0

)
W I

0

= : aIS1
(
aM0
)
.

This condition implies an affi ne equation in d̄/pS1 (ϕ) , which gives the following equilibrium price

pS1 (π) = min

{
max

{ (
π − aIS1

)
1
q1

(
1− aIS1

) (1− f) d̄, 0

}
, d̄πq1

}
.

Note that, when there is support, the share investors choose to invest with the manager in

period 1 is independent of π.

If sponsors choose to offer support with probability s, assuming the law of large numbers holds,

a mass s of managers will offer support and keep the fund open while a mass (1− s) will choose

not to offer support and liquidate the fund early. Then the net demand for the risky asset will be

D (p1, π) = s

(
aM1 (p1, π)

(
AI1 (p1, π) +WM

1 (p1, s = 1)
)

p1
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1 (p1, s = 0)
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(
aI0W

I
0 +WM

0

)
p0

)
.

In this case, the equilibrium price if AI1 (p1, π) > 0 will be given by

0 = s
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This quadratic function is negative at p1 = d̄ (1− f) q1. Therefore the equilibrium price is given by

the smallest root

pSS1 (π, s) =
−c1 (π, s)−

√
c1 (π, s)2 − 4c0 (π, s) c2 (π, s)

2c2 (π, s)
.
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if s < 1, where

c0 (π, s) = d̄ (1− f) (s
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π
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) 1
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Otherwise, AI1 (p1, π) would equal 0. Moreover, since the quadratic function is decreasing and

positive at p1 = 0, pSS1 > 0.

Finally, if the fund is liquidated the equilibrium price, pL1 (π) , is given by

pL1 (π) = min


(
1− aM0

)
1
q0

(
WM

0 + faI0W
I
0

)
+ E

aM0
p0

(1− f) aI0W
I
0

, d̄πq1


and it is determined by the amount of resources managers have that don’t come from their holdings

of the risky asset, i.e., by the cash in the market.19

Proposition 12 Under assumption 4.1.5 the equilibrium price function p∗1
(
π, aM0

)
is continuous

and non-decreasing in π for all π ∈
[
0, π∗

(
aM0
))
∪
(
π∗
(
aM0
)
, 1
]
for all aM0 .

Proof. To see this note that the expressions for pNS1

(
π, aM0

)
, pSS1

(
π, aM0

)
, pS1

(
π, aM0

)
and pL1

(
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)
are non-decreasing in π when 4.1.5 holds, that
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)
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)
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,

and that pNS1
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M
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)
= pS1
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M
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.

From the definition of πx
(
aM0
)
and π∗∗

(
aM0
)
, it is easy to see that

pL1
(
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(
aM0
)
, aM0

)
= pSS1
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)
, aM0

)
,

and that

pNS1

(
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M
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)
= pS1

(
πx, a

M
0

)
.

This follows from the continuity of the demand for the risky asset at πx
(
aM0
)
and π∗∗

(
aM0
)
.

However, the demand for the risky asset may be discontinuous at π∗
(
aM0
)
. For π ≥ π∗

(
aM0
)
,

19See Allen and Gale (1994) and Allen and Gale (2005) for more on cash-in-the-market pricing.
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the demand for the risky asset is equal to the funds’size which include the managers’wealth and

the investors’investment with their managers. For π < π∗
(
aM0
)
, all funds may be liquidated and

the demand for the risky asset is conformed by the managers’wealth only. Then, if all funds

are liquidated for π < π∗ (a0), i.e., π∗
(
aM0
)
< π∗∗

(
aM0
)
the demand function is discontinuous at

π∗
(
aM0
)
provided investors choose to invest with the manager when the realized quality of the risky

asset is π∗
(
aM0
)
. This, in turn, implies that the equilibrium price may be discontinuous at π∗

(
aM0
)
.

Proposition 5 Under assumption 4.1.5, the price function p∗1
(
π, aM0

)
is non-decreasing π for

all π ∈ [π, π̄].

Proof. From proposition 12 the price function is non-decreasing when it is continuous. Therefore,

to prove the proposition it is enough to show that
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.
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Then, from the definition of π∗
(
aM0
)
it follows that

(
x− n

(
pL1
(
π∗
(
aM0
)
, aM0

)
, aM0

))
(1− f)AI0 − fAI1

(
pS1
(
π∗
(
aM0
)
, aM0

)
, π∗

(
aM0
))

< min

{
BpL1

(
π∗
(
aM0
)
, aM0

)
d̄

, n
(
pL1
(
π∗
(
aM0
)
, aM0

)
, aM0

) (
WM

0 + fAI0
)

+ E

}
.

Moreover, using that π∗
(
aM0
)
< π∗∗

(
aM0
)
and the definition of π∗∗

(
aM0
)
one gets

fAI1
(
pL1
(
π∗∗

(
aM0
)
, aM0

)
, π∗∗

(
aM0
))
− fAI1

(
pS1
(
π∗
(
aM0
)
, aM0

)
, π∗

(
aM0
))

< 0

fAI1
(
pS1
(
π∗∗

(
aM0
)
, aM0

)
, π∗∗

(
aM0
))
− fAI1

(
pS1
(
π∗
(
aM0
)
, aM0

)
, π∗

(
aM0
))

< 0

But this implies π∗
(
aM0
)
> π∗∗

(
aM0
)
since AI1

(
pS1
(
π, aM0

)
, π
)
is increasing in π which is a contra-

diction.
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8.3 Individual threshold characterization

Proposition 13 There exists a unique threshold πx,i
(
aM0,i

)
such that support is not needed if π ≥

πx,i

(
aM0,i

)
.

Proof. The proof is straightforward using that the price function p∗1 (π) is non-decreasing in π.

The left hand side of this expression is always increasing in π.The right hand side is constant in π.

Therefore, there is a unique threshold πx,i
(
aM0,i

)
such that for all π ≥ πx,i

(
aM0,i

)
,

p∗1 (π)

p0
aM0 +

(
1− aM0

) 1

q0
≥ x. (4)

As the previous proposition shows, if the realized probability of success of the risky project is

high enough, the manager will not need to offer support to his investor to keep the fund open. In

this case, the realized net asset value will be above the liquidation threshold x. Moreover, since the

net asset value depends on the manager’s portfolio choice at t = 0, how high a realization of π is

needed not to need support will depend on this portfolio choice. The following proposition shows

that the higher the risk incurred by the manager in the initial period, the higher the realization

of π needed not to need to offer support. A full characterization of the threshold πx,i is provided

in the appendix and shows that πx,i is discontinuous in aM0,i if the price function is constant for an

interval [πa, πb] where πa < πb.

Proposition 14 πx,i

(
aM0,i

)
is increasing in aM0,i

Proof. The right hand side of (4) is constant in aM0,i whereas the left hand side is increasing in a
M
0,i

since x ≤ 1
q0
. Therefore, πx,i is increasing in aM0,i.

If π < πx,i, the manager cannot continue operating the fund unless he supports his investor. A

manager that chose to invest aM0,i in the risky asset in period 0, will choose to offer support if

H
(
π; aM0,i

)
≥ 0

where

H
(
π; aM0,i

)
: = faI∗1 (p∗1 (π) , π)

(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0

−
(
x− n

(
p∗1 (π) , aM0,i

))
aI∗0 (1− f)W I

0

+ min

{
Bp∗1 (π)

d̄
, n
(
p∗1 (π) , aM0,i

) (
WM

0 + faI∗0 W
I
0

)
+ E

}
.
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This condition is analogous to the one presented to compute the aggregate support threshold π∗.

The following two propositions characterize the support decision for an individual manager.

Proposition 15 Characterization of πx,i :

πx,i
(
aM0.i; a

M
0

)


= π for aM0,i ≤ âM0,i((
x− 1

q0

)
aM0.i

+ 1
q0

)
p0

d̄q1
for âM0,i < aM0,i ≤ aM0,i

(
aM0
)

= π∗
(
aM0
)

for aM0,i
(
aM0
)
< aM0,i ≤ āM0,i

(
aM0
)

> π∗
(
aM0
)

for aM0,i ≥ āM0,i
(
aM0
)

where

âM0,i =

(
x− 1

q0

)
(
p∗1(π)
p0
− 1

q0

) ,
π1

(
aM0
)

=

(
1− aM0

)
1
q0

(
WM

0 + faI0W
I
0

)
+ E

aM0
p0

(1− f) aI0W
I
0 d̄q1

,

aM0,i
(
aM0
)

=

(
x− 1

q0

)
aM0 (1− f) aI0W

I
0((

1− aM0
) (
WM

0 + faI0W
I
0

)
− aM0 (1− f) aI0W

I
0

)
1
q0

+ E
,

and

āM0,i
(
aM0
)

=

(
x− 1

q0

)
d̄ (1− f)

π∗(aM0 )−aIS1
1−aIS1

− q0

Proof. πx,i
(
aM0.i; a

M
0

)
is given by the minimum π such that

p∗1
(
π; aM0

)
p0

≥

(
x− 1

q0

)
aM0.i

+
1

q0
. (5)

If aM0,i ≤ âM0,i, the right hand side of this expression is ≤ 0 which implies that 5 holds for all π ≥ π

and therefore πx,i
(
aM0.i; a

M
0

)
= π. If π < π1

(
aM0
)
, for π ∈

[
π, π1

(
aM0
)]
, p∗1

(
π; aM0

)
= πd̄q1 and

πx.i is given by

πx.id̄q1

p0
=

(
x− 1

q0

)
aM0.i

+
1

q0
.

But πx.i
(
aM0.i; a

M
0

)
≤ π1

(
aM0
)
iff aM0,i ≤ aM0,i

(
aM0
)
. For π ∈

(
π1

(
aM0
)
, π∗

(
aM0
))
, p∗1 (π) = pL.

Therefore, πx.i /∈
(
π
(
aM0
)
, π∗

(
aM0
))
since if 5 holds for one π ∈

(
π1

(
aM0
)
, π∗

(
aM0
))
, it holds for

all π0 ∈
[
π1

(
aM0
)
, π∗

(
aM0
))
. Moreover, pL = π1

(
aM0
)
d̄q1. Thus, πx.i

(
aM0.i; a

M
0

)
≥ π∗

(
aM0
)
for all

aM0,i > aM0,i
(
aM0
)
. Finally, for aM0,i

(
aM0
)
< aM0,i ≤ āM0,i

(
aM0
)

p∗1
(
π∗; aM0

)
p0

≥

(
x− 1

q0

)
aM0.i

+
1

q0
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and

limπ→π∗ p∗1
(
π; aM0

)
p0

<

(
x− 1

q0

)
aM0.i

+
1

q0

which implies πx,i
(
aM0.i; a

M
0

)
= π∗

(
aM0
)
.

Lemma H
(
π; aM0,i

)
is increasing in π whenever it is continuous.

Proof. If the equilibrium price function is continuous in π, H
(
π; aM0,i

)
is always increasing in π.

To see this note that aI∗1 (p∗1 (π) , π) is always increasing in π if the equilibrium price is continuous

in π.

Proposition 6 Given the equilibrium price, there exists a unique π∗i
(
aM0,i

)
such that for all

π∗i

(
aM0,i

)
< π < πx,i

(
aM0,i

)
there is an equilibrium in which all individual managers strictly prefer

to offer support.

Proof. An individual manager will offer support in all states π such that H
(
π; aM0,i

)
≥ 0. If the

equilibrium price is continuous in π or if the equilibrium price is discontinuous at π∗
(
aM0
)
but

limπ→π∗ H
(
π; aM0,i

)
< H

(
π∗; aM0,i

)
, the proof follows from monotonicity of H

(
π; aM0,i

)
in π, using

lemma 8.3. If limπ→π∗ H
(
π; aM0,i

)
> H

(
π∗; aM0,i

)
and limπ→π∗ H

(
π; aM0,i

)
> H

(
π∗; aM0,i

)
> 0 or

0 > limπ→π∗ H
(
π; aM0,i

)
> H

(
π∗; aM0,i

)
, H

(
π; aM0,i

)
crosses 0 only once and the statement of the

proposition holds.

Suppose that limπ→π∗ H
(
π; aM0,i

)
> 0 > H

(
π∗; aM0,i

)
. Then, the set of realizations of π for

which the manager offers support is given by
[
π∗i

(
aM0,i

)
, π∗
]
∪
[
π̄∗i

(
aM0,i

)
, 1
]
where

0 = faI∗1
(
pL1 (π∗i ) , π

∗
i

)(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0

−
(
x− n

(
pL1 (π∗i ) , a

M
0,i

))
aI∗0 (1− f)W I

0

+ min

{
BpL1 (π∗i )

d̄
, n
(
pL1 (π∗i ) , a

M
0,i

) (
WM

0 + faI∗0 W
I
0

)}
,

or π∗i
(
aM0,i

)
= 0 and

0 = faI∗1
(
pS1 (π̄∗i ) , π̄

∗
i

)(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0

−
(
x− n

(
pS1 (π̄∗i ) , a

M
0,i

))
aI∗0 (1− f)W I

0

+ min

{
BpS1 (π̄∗i )

d̄
, n
(
pS1 (π̄∗i ) , a

M
0,i

) (
WM

0 + faI∗0 W
I
0

)}
.

Note that π∗i
(
aM0,i

)
≤ π∗

(
aM0
)
≤ π̄∗i

(
aM0,i

)
, and therefore, the LHS of the expressions above is

decreasing in aM0,i, since p
L
1 (π∗i ) < pS1

(
π̄∗i

(
aM0,i

))
≤ 1

q0
(if π̄∗i

(
aM0,i

)
> πx

(
aM0,i

)
, LHS>0). Moreover,
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from the definition of π∗
(
aM0
)
and using that H

(
π; aM0,i

)
is increasing in π in

(
π∗
(
aM0
)
, 1
]
,

0 < faI∗1 (p∗1 (π̄∗i ) , π̄
∗
i )

(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0 \

−
(
x− n

(
p∗1 (π̄∗i ) , a

M
0

))
aI∗0 (1− f)W I

0

+ min

{
Bp∗1 (π̄∗i )

d̄
, n
(
p∗1 (π̄∗i ) , a

M
0

) (
WM

0 + faI∗0 W
I
0

)}
which implies that aM0,i ≥ aM0 . From the definition of π∗

(
aM0
)
,

0 > faI∗1
(
pL1
(
π∗
(
aM0
))
, π∗

(
aM0
))(

x (1− f) aI0 +
(
1− aI0

) 1

q0

)
W I

0

−
(
x− n

(
pL1
(
π∗
(
aM0
))
, aM0

))
aI∗0 (1− f)W I

0

+ min

{
BpL1

(
π∗
(
aM0
))

d̄
, n
(
pL1
(
π∗
(
aM0
))
, aM0

) (
WM

0 + faI∗0 W
I
0

)}

and since the LHS is decreasing in aM0 , this implies

0 > faI∗1
(
pL1 (π∗i ) , π

∗
i

)(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0

−
(
x− n

(
pL1 (π∗i ) , a

M
0,i

))
aI∗0 (1− f)W I

0

+ min

{
BpL1 (π∗i )

d̄
, n
(
pL1 (π∗i ) , a

M
0,i

) (
WM

0 + faI∗0 W
I
0

)}
which is a contradiction.

Therefore, H
(
π, aM0,i

)
crosses 0 at most once and the proposition holds.

Proposition 16 π∗i
(
aM0.i; a

M
0

)
is increasing in aM0,i.

Proof. Follows from the definition of H and the fact that p∗1 (π) < 1
q0
< x for all π ≤ πx,i

(
aM0,i

)
.

8.4 Investor’s problem

The t = 2 wealth of an investor with manager i is given by

W I
2

(
aI0; aM0i , π

∗∗
i , π

∗
i , πx,i, s̄ (π) , π

)

=


(
aI∗1 (p1 (π) , π)

(
(1− f) d− 1

q1

)
+ 1

q1

)
W I

1 if π ≥ π∗i

1
q1
W I

1

(
s̄ (π) aI∗1 (p1 (π) , π)

(
(1− f) d− 1

q1

)
+ 1

q1

)
if π < π∗i

,
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where W1 = W1

(
aI0; aM0i , π

∗∗
i , π

∗
i , πx,i, s̄ (π) , π

)
W I

1

(
aI0; aM0i , π

∗∗
i , π

∗
i , πx,i, s̄ (π) , π

)

=


(
x (1− f) aI0 +

(
1− aI0

)
1
q0

)
W I

0 if πx,i > π ≥ π∗i

(
s̄ (π)x+ (1− s̄ (π))n

(
p1 (π) , aM0,i

))
(1− f)AI0+

(
1− aI0

) W I
0
q0

otherwise

.

Because of log utility, the investor’s problem can be rewritten as

max
aI0∈[0,1]

Eπs∗ (π) logW I
1

(
aI0; aM0i , π

∗∗
i , π

∗
i , πx,i, s̄ (π) , π

)
+Eπ (1− s∗ (π)) logW I

1

(
aI0; aM0i , π

∗∗
i , π

∗
i , πx,i, s̄ (π) , π

)
.

The first order condition for an interior solution is

0 =

∫ π̄

πx(aM0 )

n
(
p1 (π) , aM0

)
(1− f)− 1

q0(
n
(
p1 (π) , aM0

)
(1− f) aI0 +

(
1− aI0

)
1
q0

)dG (π)

+

∫ πx(aM0 )

π∗(aM0 )

x (1− f)− 1
q0

x (1− f) aI0 +
(
1− aI0

)
1
q0

dG (ϕ)

+

∫ π∗(aM0 )

0

n
(
p1 (π) , aM0

)
(1− f)− 1

q0

n
(
p1 (π) , aM0

)
(1− f) aI0 +

(
1− aI0

)
1
q0

dG (π)

The SOC is negative.

0 > −
∫ π̄

πx(aM0 )

(
n
(
p1 (π) , aM0

)
(1− f)− 1

q0

n
(
p1 (π) , aM0

)
(1− f) aI0 +

(
1− aI0

)
1
q0

)2

dG (π)

−
∫ πx(aM0 )

π∗(aM0 )

(
x (1− f)− 1

q0

x (1− f) aI0 +
(
1− aI0

)
1
q0

)2

dG (π)

−
∫ π∗(aM0 )

0

(
λn
(
p1 (π) , aM0

)
(1− f)− 1

q0

λn
(
p1 (π) , aM0

)
(1− f) aI0 +

(
1− aI0

)
1
q0

)2

dG (π)

8.5 Manager’s Objective Function

Manager i′s wealth at t = 2 is given by πd̄
p1
WM

1 where

WM
1 = WM

1

(
aM0,i;πx,i

(
aM0,i
)
, π∗i

(
aM0,i
)
, aI0, π

)
.

If no support is needed for the fund to continue at t = 1,

WM
1 = n

(
p∗1 (π) , aM0,i

) (
WM

0 + faI0W
I
0

)
+ E + fAI∗1 (π) .
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If the manager offers support to his investor at t = 1,

WM
1 = n

(
p∗1 (π) , aM0,i

) (
WM

0 + faI0W
I
0

)
+ E + fAI∗1 (π)

−
(
x− n

(
p∗1 (π) , aM0,i

))
aI∗0 (1− f)W I

0 .

Finally, if the fund is liquidated

WM
1 = n

(
p∗1 (π) , aM0,i

) (
WM

0 + faI0W
I
0

)
+ E.

8.5.1 Continuity

Since πx,i
(
aM0,i

)
can have a discontinuity at aM0,i

(
aM0
)
, the objective function can be discontinuous

at aM0,i
(
aM0
)
too.

If πx,i
(
aM0,i

(
aM0
))

= π∗i

(
aM0,i

(
aM0
))
,

Obj
(
aM0,i

(
aM0
))
− lim
a→aM0,i(aM0 )

+
Obj (a)

=

∫ π∗

πx,i(aM0,i)

πd̄
p∗1(π)fa

I∗
1 (π)

 aI∗0 (1− f)
(
aM0,i

(
p∗1(π)
p0
− 1

q0

)
+ 1

q0

)
+
(
1− aI∗0

)
1
q0

W I
0 dG (π)

+

∫ π∗

πx,i(aM0,i)
BπdG (π)

≥ 0

and the objective function jumps down and a maximum always exists.

When B = 0, p∗1
(
πx,i

(
aM0,i

(
aM0
)))

= d̄πx,i

(
aM0,i

(
aM0
))
q1 which implies that

aI1
(
p∗1
(
πx,i

(
aM0,i

(
aM0
)))

, πx,i
(
aM0,i

(
aM0
)))

= 0

and, hence, that πx,i
(
aM0,i

(
aM0
))

= π∗i

(
aM0,i

(
aM0
))
.

If πx,i
(
aM0,i

(
aM0
))

> π∗i

(
aM0,i

(
aM0
))

Obj
(
aM0,i

(
aM0
))
− lim
a→aM0,i(aM0 )

+
Obj (a)

=

∫ π∗

πx,i(aM0,i)

πd̄
p∗1(π)

(
faI∗1 (π)− 1

) ((
aM0,i

(
p∗1(π)
p0
− 1

q0

)
+ 1

q0

)
− x
)
aI∗0 (1− f)W I

0 dG (π)

≤ 0

and the objective function jumps up at aM0,i
(
aM0
)
and I cannot guarantee the existence of a maxi-

mum. In a symmetric equilibrium, if πx,i
(
aM0,i

)
is discontinuous, aM0,i

(
aM0
)
< aM0 .
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8.5.2 Differentiability

The first derivative of the manager’s objective function with respect to aM0,i when the objective

function is differentiable is given by∫
π∗Ei (aM0,i)

πd̄
p∗1(π)

(
p∗1(π)
p0
− 1

q0

) (
WM

0 + faI0W
I
0

)
dG (π)

+

∫
πx,i(aM0,i)

πd̄
p∗1(π)fa

I∗
1 (π)

(
p∗1(π)
p0
− 1

q0

)
aI∗0 (1− f)W I

0 dG (π)

+

∫ πx,i(aM0,i)

π∗i (aM0,i)

πd̄
p∗1(π)

(
p∗1(π)
p0
− 1

q0

)
aI∗0 (1− f)W I

0 dG (π)

−∂π∗i (aM0,i)
aM0,i

π∗i (aM0,i)d̄
p∗1(π∗i (aM0,i))



n
(
p∗1

(
π∗i

(
aM0,i

))
, aM0,i

) (
WM

0 + faI0W
I
0

)
+faI∗1

(
π∗i

(
aM0,i

))(
aI∗0 (1− f)x+

(
1− aI∗0

)
1
q0

)
W I

0

−
(
x− n

(
p∗1

(
π∗i

(
aM0,i

))
, aM0,i

))
aI∗0 (1− f)W I

0

+B
d̄
p∗1

(
π∗i

(
aM0,i

))


dG

Using the definition of π∗i and the fact that if (condition) holds with strict inequality then
∂π∗i (aM0,i)

aM0,i
= 0 (when it exists), the last term in the first derivative is equal to

∂π∗i

(
aM0,i

)
aM0,i

×
π∗i

(
aM0,i

)
d̄

p∗1

(
π∗i

(
aM0,i

))
×min

{
0, n

(
p∗1
(
π∗i
(
aM0,i
))
, aM0,i

) (
WM

0 + faI0W
I
0

)
+ E − B

d̄
p∗1
(
π∗Ei

(
aM0,i
))}

dG.

Therefore, the first derivative of the objective function with respect to aM0,i is∫ π̄

π

πd̄

p∗1 (π)

(
p∗1 (π)

p0
− 1

q0

)(
WM

0 + faI0W
I
0

)
dG (ϕ)

+

∫ π̄

πx,i(aM0,i)

πd̄

p∗1 (π)
faI∗1 (π)

(
p∗1 (π)

p0
− 1

q0

)
aI∗0 (1− f)W I

0 dG (π)

+

∫ πx,i(aM0,i)

π∗i (aM0,i)

πd̄

p∗1 (π)

(
p∗1 (π)

p0
− 1

q0

)
aI∗0 (1− f)W I

0 dG (π)

+
∂π∗i

(
aM0,i

)
∂aM0,i

π∗i

(
aM0,i

)
d̄

p∗1

(
π∗i

(
aM0,i

))
×min

{
0, n

(
p∗1
(
π∗i
(
aM0,i
))
, aM0,i

) (
WM

0 + faI0W
I
0

)
+ E − B

d̄
p∗1
(
π∗i
(
aM0,i
))}

dG.

When B = 0, this first derivative is continuous when the objective function is differentiable.
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When B > 0, the first derivative is not defined at the discontinuity points of π∗i
(
aM0,i

)
, at

aM0,i
(
aM0
)
, âM0,i

(
aM0
)
, and āM0,i

(
aM0
)
.

∂π∗i

(
aM0,i

)
aM0,i



= 0 if aM0,i < aM0,i
(
aM0
)

> 0 if aM0,i ∈
(
aM0,i

(
aM0
)
, âM0,i

(
aM0
))

= 0 if aM0,i ∈
(
âM0,i

(
aM0
)
, āM0,i

(
aM0
))

> 0 if aM0,i > ā
(
aM0
)

Therefore

∂Obj

∂aM0,i
(ā)− lim

a→(aM0,i)

∂Obj

∂aM0,i
(a)



> 0 if ā = aM0,i
(
aM0
)

< 0 if ā = âM0,i
(
aM0
)

> 0 if ā = āM0,i
(
aM0
)

= 0 else

.

Therefore, aM0,i
(
aM0
)
and āM0,i

(
aM0
)
are candidates for a maximum.

When the first derivative is differentiable, the second derivative of the objective function is given

by ∂2Obj
∂aM2

0,i
=

(
1− faI∗1

(
πx,i

(
aM0,i
))) πx,i

(
aM0,i

)
d̄

p∗1

(
πx,i

(
aM0,i

))
×

p∗1
(
πx,i

(
aM0,i

))
p0

− 1

q0

 aI∗0 (1− f)W I
0 dG

∂πx,i

(
aM0,i

)
aM0,i

+
π∗i

(
aM0,i

)
d̄

p∗1

(
π∗i

(
aM0,i

))
p∗1

(
π∗i

(
aM0,i

))
p0

− 1

q0

 aI∗0 (1− f)W I
0 dG (π)

∂π∗i

(
aM0,i

)
aM0,i

+
∂2π∗i

(
aM0,i

)
∂aM2

0,i

π∗i

(
aM0,i

)
d̄

p∗1

(
π∗i

(
aM0,i

))
×min

{
0, n

(
p∗1
(
π∗i
(
aM0,i
))
, aM0,i

) (
WM

0 + faI0W
I
0

)
+ E − B

d̄
p∗1
(
π∗i
(
aM0,i
))}

dG

+

(
∂π∗i (aM0,i)
∂aM0,i

)2

×

∂
∂aM0,i

 π∗i (aM0,i)d̄
p∗1(π∗i (aM0,i))

min

 0, n
(
p∗1

(
π∗i

(
aM0,i

))
, aM0,i

) (
WM

0 + faI0W
I
0

)
+E−B

d̄
p∗1

(
π∗i

(
aM0,i

))

 dG.

When B = 0,
∂2Obj

∂aM2
0,i

(
aM0
)
> 0

therefore, there cannot be a symmetric equilibrium in which aM0 is interior.
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8.6 Numerical Analysis

To continue illustrating the forces at work in the model, I compute the equilibria for several examples

and provide some intuition for how these equilibria change with the cost faced by mangers upon

early liquidation of the fund, and with the amount of capital in the funds.

Figure 9 depicts symmetric equilibria for different values of B. For all parameterizations shown

in the figure, the risk behavior of the managers remains unchanged: at t = 0, managers invest all

the funds’wealth in the risky asset. Fees are increasing in B: a higher B implies a higher loss for

managers if their fund is liquidated early. Since managers are taking risky positions in equilibrium,

they higher the loss B, the higher the compensation needed for managers to be willing to open a

fund. Moreover, the higher the loss due to the early liquidation of a fund, the higher the incentive

of managers to offer support, and the lower the probability of breaking the buck. Finally, the

change in the supply of liquidity will be driven by the change in the amount intermediated in the

economy. Investors face higher fees and receive higher insurance as B increases. These two forces

have countervailing effects on their willingness to invest with managers and can drive liquidity

supply up or down. In the examples shown here, the effect of the higher fees prevails and liquidity

supply decreases with B.

Figure 10 shows symmetric equilibria for different values of WM
0 when B > 0. As in the

previous examples, the risk behavior of the managers is the same for all parameterizations shown

in the figure and managers take as much risk as they can at t = 0. Moreover, the equilibrium fees

and the probability of breaking the buck are increasing in WM
0 . A higher WM

0 changes the amount

of resources in the economy and it increases the demand for the risky asset at t = 0. This drives the

price of the risky asset at t = 0 up and the return of one unit invested in the risky asset and, hence,

the NAV down. The decrease in the NAV for all realizations of π implies that the manager will need

to offer more support in order to keep the fund going at t = 0. If the incentives to offer support

remain unchanged, this will translate into a higher probability of breaking the buck. Moreover,

these effects decrease the return of investing with the manager at t = 0. Therefore, fees must

increase to keep the managers indifferent between opening a fund and managing only their own

funds. In this example, the increase in the fees is not enough to increase the managers’incentives

to offer support enough to offset the effect of a lower NAV over the probability of breaking the

buck. Thus, investors face higher fees and less insurance which translates into lower intermediation

levels and lower liquidity.
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45



100 200 300

4

5

6

x 10
­3 Equi l ibrium fees

W
0
M

f

100 200 300
0

0.5

1

1.5

2
Manager Portfolio choice at t=0

W
0
M

a 0M

100 200 300
0

0.5

1

W
0
M

Probabil ity of breaking the buck

100 200 300
340

360

380

400

420

Level of Intermediation

W
0
M

A
0I

Figure 10: Equilibrium when WM
0 changes.

46



8.7 Results

Proposition 7 If B = 0, aM∗0 = 1 in a symmetric equilibrium.

Proof. Using the characterization of the objective function for the manager, one can see this func-

tion is differentiable and convex at aM0,i = aM0 when B = 0. Therefore, in a symmetric equilibrium

aM0 cannot be an interior solution. Assuming that the supply function is such that there is always

some risky asset bough at t = 0, aM0 has to be 1 in a symmetric equilibrium.

Proposition 8 The amount of assets managed for investors at t = 1, AI1, is increasing in the

net asset value, n
(
p1, a

M
0

)
.

Proof. From the definition of AI1, we have

AI1 =

 aI1 (p1, π)W1 if the fund continues

0 if the fund is liquidated

where aI1 is independent of the return of the investor’s shares bought at t = 0. Moreover, the

investor’s wealth is (weakly) increasing in the net asset value since

W1 = max
{
x, n

(
p 1, a

M
0

)}
(1− f) aI0W

I
0 +

1

q0

(
1− aI0

)
W I

0 .

Lemma 1 When B = 0, the manager’s support decision is a threshold decision for all Bi > 0 and

all WM
0,i at the equilibrium price (given the equilibrium decisions for other managers).

Proof. To show that the proposition holds it is enough to show that it cannot be the case that

lim
π→π∗

H
(
π; aM0,i, Bi,W

M
0,i

)
≥ 0 > H

(
π∗; aM0,i, Bi,W

M
0,i

)
Let

H
(
π; aM0,i, Bi,W

M
0,i

)
: = faI∗1 (p∗1 (π) , π)

(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0

−
(
x− n

(
p∗1 (π) , aM0,i

))
aI∗0 (1− f)W I

0

+ min

{
Bp∗1 (π)

d̄
, n
(
p∗1 (π) , aM0,i

) (
WM

0,i + faI∗0 W
I
0

)
+ E

}
.

I know from the definition of the aggregate support decision threshold that

H (π∗; 1, 0, 0) = faI∗1
(
pS1 (π∗) , π̄∗i

)(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0

−
(
x− pS1 (π∗)

p0

)
aI∗0 (1− f)W I

0

= 0
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and that

lim
π→π∗

H (π; 1, 0, 0) = faI∗1
(
pL1 (π∗) , π̄∗i

)(
x (1− f) aI0 +

(
1− aI0

) 1

q0

)
W I

0

−
(
x− pL1 (π∗)

p0

)
aI∗0 (1− f)W I

0

≤ 0

H
(
π; aM0,i, Bi

)
is decreasing in aM0,i and increasing in Bi and W

M
0,i . Therefore, it cannot be the case

that for some triplet
(
aM0,i, Bi,W

M
0,i

)
lim
π→π∗

H
(
π; aM0,i, Bi;W

M
0,i

)
≥ 0 > H

(
π∗; aM0,i, Bi,W

M
0,i

)
since H

(
π∗; aM0,i, Bi,W

M
0,i

)
≥ 0 always.

Proposition 9 Suppose B = 0 for all managers but for manager j. Then, in equilibrium, the

risk taken by manager j at t = 0 will be decreasing in Bj and he will choose aM0 ,j ∈
{
aMS

0 , 1
}
where

aMS
0 = max aM0,i s.t. πx,i

(
aM0,i

)
= π.

Proof. Using lemma 1 and the characterization of the manager’s objective function when B = 0,

one can see that the two candidates for maxima are VM
(
WM

0 ; aMS
0

)
and VM

(
WM

0 ; 1
)
, where aMS

0

is the highest aM0,i such that πx,i
(
aM0,i

)
= π. Then,

aM∗0,j =

 aMS
0 if VM

(
WM

0 ; aMS
0

)
− VM

(
WM

0 ; 1
)
> 0

1 if VM
(
WM

0 ; aMS
0

)
− VM

(
WM

0 ; 1
)
< 0

.

When Bj = 0, VM
(
WM

0 ; aMS
0

)
< VM

(
WM

0 ; 1
)
(follows from Proposition 7). Moreover,

lim
B→∞

(
VM

(
WM

0 ; aMS
0

)
− VM

(
WM

0 ; 1
))

=∞.

Let

Θ = 1

{
Bp∗1 (π∗ (1))

d̄
>
p∗1 (π∗i (1))

p0

(
WM

0,i + faI∗0 W
I
0

)
+ E

}
Using the characterization of the objective function in the previous section,

∂
(
VM

(
WM

0 ; aMS
0

)
− VM

(
WM

0 ; 1
))

∂Bj

∝
∫ π∗i (1)

π
Biπdπ + Θ

∂π∗i
∂Bi

(1)

(
π∗i (1)d̄
p∗1(π)

(
p∗1(π∗i (1))

p0

(
WM

0,i + faI∗0 W
I
0

)
+ E

)
−Biπ∗i (1)

)
0 <

∂
(
VM

(
WM

0 ; aMS
0

)
− VM

(
WM

0 ; 1
))

∂Bj

since ∂π∗i
∂Bi

(1) < 0.
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