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Large-block transactions now account for a substantial fraction of the
volume of trading in common stocks.1 Many of these transactions
originate in the so-called upstairs market. In upstairs markets, large
transactions are accomplished through a search-brokerage mechanism
where an intermediary or broker locates counterparties to a trade be-
fore sending it to the downstairs market for execution.2 By contrast,
downstairs markets (such as the NYSE) rely on market makers, floor
traders, and limit orders to provide liquidity on demand. Markets re-
sembling the upstairs mechanism exist for other assets and in other
countries. Yet despite their importance as a source of liquidity, rel-
atively little is known about how prices in upstairs markets are de-
termined. This article’s objective is to increase our understanding of
the effects of large transactions facilitated in the upstairs market for
common stock.

We develop a theoretical model of the upstairs market where order
size, beliefs, and prices are formed endogenously. The model yields
testable hypotheses that formalize and extend previously articulated
predictions about the price effects associated with a large trade [see,
e.g., Burdett and O’Hara (1987), Grossman (1992), and Seppi (1990)].
For example, in contrast to previous models, our model predicts that
the temporary price impact, the liquidity component of the trade, is
a concave function of order size. Intuitively the number of counter-
parties located by the block broker is an increasing function of order
size, and spreading the order among more traders lowers the liquid-
ity cost, producing the concave relation. Also, our model allows for
information leakage prior to the trade as the block is “shopped,” re-
sulting in a measure of the permanent component of price impact
that includes the period prior to the trade. Finally, a formal descrip-
tion of this important, yet relatively unstudied, market mechanism is
of independent interest.

We investigate the model’s hypotheses with unique data on the up-
stairs trades of an investment management firm. Our data differ from
those employed in previous empirical analyses of the price impacts
associated with block trades [see, e.g., Ball and Finn (1989), Choe,
McInish, and Wood (1991), Holthausen, Leftwich, and Mayers (1987,

1 A block trade is often defined as a trade of 10,000 or more shares. In 1993, block trades represented
almost 54 percent of New York Stock Exchange (NYSE) share volume; in 1965 the corresponding
figure was just 3 percent.

2 Under NYSE Rule 76, it is generally illegal to prenegotiate trades on the NYSE; the order must
be exposed to the public in accordance with auction principles of price and time priority for
possible price improvements. See Hasbrouck, Sofianos, and Sosebee (1993) for further details.
Thus, when we describe a block trade as being negotiated or arranged upstairs, we refer to the
process of upstairs intermediation (or facilitation) by which a block trader finds counterparties to
accommodate a large trade.
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1990), Kraus and Stoll (1972), Mikkelson and Partch (1985), Scholes
(1972), and Seppi (1992a)] in several important respects. First, the
transactions in our sample are all upstairs trades, whereas those used
in previous studies are identified by their size and consequently con-
sist of a mixture of upstairs and downstairs trades. The inability to
identify the mechanism of origin of a large trade is a problem since
the majority of block trades of 10,000 or more shares are downstairs
trades.3 Second, the investment firm providing the data has a policy
of accepting only those trades that are not fragmented.4 The trades
examined in previous studies, however, may represent only parts of
larger orders that are broken up for easier execution in the downstairs
market. Order fragmentation can potentially bias the measured price
impacts associated with upstairs-negotiated trades. Third, trades in our
sample are identified as either buyer or seller initiated. In most pre-
vious studies, by contrast, trade initiation must be inferred indirectly
from tick tests based on the direction of the price movement. This
procedure may result in biases because some trades are incorrectly
classified. Finally, whereas most previous studies of block transac-
tions in U.S. markets examine only trades on the NYSE and AMEX,
the transactions examined here are for stocks that reside in the bot-
tom half of market capitalization on the NYSE and are traded on the
NYSE, AMEX, and NASDAQ.

Although our data are uniquely suited to an analysis of the up-
stairs market, there is an important caveat to keep in mind. Since the
investment firm providing the data (a passive, small-cap stock man-
ager) is a party to all trades in the sample, idiosyncratic aspects of the
firm’s trading style may affect our empirical results, even though the
transactions represent a broad cross-section of stocks. Consequently,
caution is required in generalizing our results to the upstairs market
as a whole.

The empirical results provide support for the model’s predictions
about price movements around upstairs-facilitated trades. We find that
price movements up to 4 weeks prior to the trade date are signifi-
cantly related to trade size. This is consistent with the model, where
information leakage occurs as the block is shopped prior to the trade

3 The New York Stock Exchange (1993) reports that only 27 percent of NYSE block volume in
1993 was facilitated upstairs by member firms. Similar figures are reported for the Dow Jones 30
firms by Cheng and Madhavan (1995). For active stocks it is not unusual for downstairs market
makers to accommodate trades well in excess of 10,000 shares from inventory. See, for example,
Madhavan and Smidt (1993) and Hasbrouck and Sofianos (1993).

4 It is possible, of course, that the broker knowingly or unknowingly arranges a trade that is part of
an ongoing series of transactions. However, anecdotal evidence suggests that these occurrences
are rare, possibly because they can easily be detected ex post in the thin markets in which the
firm trades and block brokers wishing to protect their reputational capital may avoid dealing with
initiators who pursue such actions.
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date. Thus, the standard measure of the permanent price impact, esti-
mated using trade-day price movements, can seriously understate the
information contained in the block trade. This may explain why in
the previous literature the permanent impacts measured on the block
trade day are not related to trade size. Indeed, using the traditional
definition we find that permanent impacts are significant but unre-
lated to trade size. The temporary price impact (which captures the
price-pressure effect of the trade) is a concave function of order size,
as predicted by our model. Finally, the temporary price impacts of
seller-initiated block trades (which make up almost 80 percent of our
sample) are substantially larger than found in previous studies, partly
because the trades are larger and in smaller capitalization stocks than
those used in most previous studies of price impacts of block trades.
However, even when the price impacts reported here are compared
to results in recent studies that examine similar-sized trades in stocks
of similar market capitalization [e.g., Chan and Lakonishok (1993a)],
the price impacts of large trades in small stocks reported here are
larger, suggesting more attention be paid to the lack of liquidity in
these markets.

The article proceeds as follows. Section 1 develops a theoretical
model of the upstairs market. Section 2 describes the data and pro-
vides summary results for our sample of block trades. Section 3 re-
ports our results and the corresponding implications for assessing the
implicit costs of trading. Section 4 summarizes the article.

1. A Model of the Upstairs Market for Block Trades

1.1 The basic framework
We begin our analysis with a theoretical examination of the operation
of the upstairs market. Consider a risky security whose full-information
value at time T in the future, denoted by ṽ, is distributed normally
with mean µ and variance σ 2

v . Our analysis focuses on the price path
of the security around an upstairs-negotiated transaction that occurs
at calendar time tb . Let td represent the day when the trade initiator
decides to trade a large block, t0 represent the day preceding the
actual execution of the block, and t1 represent the day immediately
after the block is executed, where td < t0 < tb < t1 < T . Associated
with trading at times td , t0, tb , and t1 are the prices pd , p0, pb , and p1,
respectively. Note that only the block transaction price pb represents
a trade in the upstairs market; all other prices represent downstairs
dealer-auction (end-of-day) market prices. Downstairs market prices
are assumed to equal the expected value of the stock given the public
information at that time and are determined by an auction mechanism
with atomistic traders.
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At the decision date td , the block trade is not public so that pd is
the unconditional expectation of the liquidation value, that is, pd =
Etd [ṽ ] = µ. The intermediate or pretrade downstairs price p0 may dif-
fer from µ because information about the size of the block trade has
become public through “leakage” in the upstairs market. This infor-
mation is valuable because there is a possibility the trade is initiated
by a trader with private information about the liquidation value of
the asset, as we show below. When the block trade is arranged at
time tb , the block traders and counterparties are assumed to condi-
tion their beliefs on the size of the trade, so that for one of these
agents, Etb [ṽ ] = E [ṽ|Q].5 At date t1 after the trade is public, the post-
trade price is equal to the expectation of the asset’s value conditioned
on order size, that is, p1 = Et1 [ṽ ] = E [ṽ|Q].

It is useful at this stage to distinguish between the permanent and
temporary components of the price changes around a block trade.
These distinctions, first used by Kraus and Stoll (1972), are commonly
used in the empirical literature on block trading. The permanent com-
ponent represents the change in the market’s perception of the secu-
rity’s value due to the block transaction. In previous empirical work,
the permanent component is defined as the difference between the
stock’s price before and after the block, that is, by p1 − p0. We argue
below that this definition may understate the true revision in beliefs as
a result of the trade. Intuitively, the inevitable leakage of information
about order size as the trade is negotiated in the upstairs market may
be reflected in the pretrade price. Our approach is to define a new
measure of a permanent impact with reference to the price at the time
the trade was initiated. Accordingly, we define the permanent impact
as

π = p1 − pd . (1)

The temporary component represents the transitory price movement
necessary to provide the liquidity to absorb the block. We define the
temporary component, τ , as the deviation between the block price
and the price on the day following the block where

τ = pb − p1. (2)

The total price impact associated with the block trade is the sum of
the two components, that is, pb − pd = π + τ . Our objective is to
obtain closed-form solutions for the two price components. This is

5 The observed block price will not equal the conditional expectation because counterparties must
be compensated for their services in bearing risk (i.e., the temporary price impact). This liquidity
or price pressure effect is particular to the block trade, and is dissipated by the end of the day
following the trade.
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complicated by the fact that the price components are determined
endogenously; the revision in beliefs and the price pressure effects
depend on the optimal behavior of the initiator, which in turn is con-
ditioned on expectations of the price effects of the trade.

1.2 Upstairs market participants
There are three types of agents in the model: a trader who initiates the
block trade, a block trader (or upstairs market maker) who facilitates
the trade by locating potential counterparties to take the opposite
side of the block transaction, and the counterparty traders themselves.
Traders maximize their utility given their conjectures regarding the
strategic behavior of other agents and their beliefs about the value of
the security. In equilibrium, agents’ conjectures regarding strategies
are correct and their predictions of the asset’s value are based on
rational expectations.

We examine the trading sequence in reverse order, analyzing first
the counterparty traders who eventually take the opposite side of the
block, then considering the block trader’s choice of the number of
counterparties to locate, and finally closing the model by analyzing
the strategy of the initiator of the trade.

1.2.1 Potential traders. Let Q represent the number of shares the
initiator wishes to trade, where Q > 0 is interpreted as a buy order
and Q < 0 is a sell order. The trade size chosen by the initiator is
determined endogenously, and we describe the optimization prob-
lem below. The initiator contacts a block trader who locates potential
traders. A representative potential trader (indexed by i) has a mean-
variance utility function over final period wealth of the form

E [W̃i ]−
(ρ

2

)
σ 2[W̃i ], (3)

where W̃i is the (random) wealth at time T , ρi is trader i’s coefficient
of absolute risk aversion, and E [ · ] and σ 2[ · ] represent the mean and
variance operators, given the trader’s information at time tb . Wealth
W̃i is a random variable given by

W̃i = (ṽ − pb)qi + zi, (4)

where ṽ is the final-period value of the risky asset, qi is the number
of shares of the risky security traded by i, with the sign convention
that purchases are positive and sales are negative, zi is trader i’s initial
cash holding, and pb is the price at which the shares are traded.

We assume that the counterparties know the total size of the or-
der. The assumption that order size is inferred by potential traders is
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consistent with the absence of anonymity in the upstairs market. Alter-
natively, this assumption can be motivated by reputational considera-
tions including the block trader’s desire to maintain long-term relation-
ships with potential customers. For simplicity, we assume traders have
homogeneous expectations and consider a representative counter-
party.6 Thus, the counterparty’s expectation of asset value is equal
(on average) to the posttrade price, p1.

Assuming that counterparties are price takers, we can derive the
demand function for the representative counterparty by substituting
Equation (4) into Equation (3), and maximizing utility with respect to
qi .7 This yields the demand function:

qi(pb;Q) = Etb [ṽ|Q]− pb

ρσ 2[ṽ|Q]
. (5)

The demand function depends on Q because the counterparty’s ex-
pectation of asset value, Etb [ṽ|Q], is conditioned on the signal con-
veyed by the initiator’s order size.

1.2.2 The block trader. We assume the block trader is a compet-
itive broker who does not hold inventory but facilitates the trade by
locating counterparties to take the opposite side.8 The brokerage func-
tion involves costly search, and the block trader charges commissions
to offset these costs. Increasing the number of traders participating in
the block transaction increases search costs and hence the initiator’s
commission fees, but decreases the price impact faced by the initiator
since the block is absorbed by more counterparties. We assume that
the block trader chooses the number of searches to minimize the total
expected execution costs, which consist of the total price impact and
the direct commission costs, of the initiator. At the optimal number of
searches, the marginal cost of locating an additional trader must equal
the expected marginal benefit in terms of a better price on the entire
amount of the trade.

Burdett and O’Hara (1987) provide a model of the block market
based on sequential search. In their model, marginal search costs are

6 It is straightforward to extend the model to incorporate heterogeneous expectations without
altering our conclusions.

7 This assumption is reasonable if there are many potential traders present in the market or if block
traders do not negotiate with counterparties. The analysis could be extended to allow counter-
parties to possess market power, as may be the case for small stocks, without significantly altering
our qualitative results.

8 Many block traders do not take principal positions, possibly reflecting capital constraints, inventory
holding costs, or agency problems. Our model can be extended to allow the block trader to act
as a dealer who positions part of the block by treating the block trader as another counterparty.
It is also straightforward to incorporate a broker who possesses market power.
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interpreted as the marginal permanent price impact from revealing
the impending trade to an increasingly large group of traders. Hence,
Burdett and O’Hara (1987) find that more intensive searches increase
the probability of execution, but result in larger permanent impacts.
By contrast, the transaction price in our model reflects the trade size
irrespective of when this information is revealed. Indeed, if it were
possible for a block trader to deceive counterparties about the trade
size by limiting the number of searches, he/she would soon develop
a reputation for such actions. Potential counterparties with rational
expectations would make inferences about the true size of the order
from the portion they observe or simply deal with other block traders.
Thus, we do not treat the permanent price impact as an economic cost.

Let φ(n) represent the total costs of locating n potential counter-
party traders. Search costs in our model represent both explicit and
implicit costs associated with locating counterparties. As noted above,
the marginal permanent impact of an additional search is not a compo-
nent of this cost function as this is a pecuniary cost. While the explicit
costs of locating a potential trader are likely to be relatively small, the
implicit costs associated with search may be significant. Implicit costs
include the costs to the broker associated with failing to arrange the
trade in a timely manner, and the potential reputational costs to the
block trader if the trade later appears to have been informationally mo-
tivated. Reputational costs may arise even if counterparties understand
and rationally price adverse selection risk. Intuitively, suppose there
are differences among block brokers in their ability to screen informed
traders. If a trade subsequently results in losses to the counterparties,
these agents (particularly those counterparties with whom the block
trader has had few prior dealings) may be reluctant to participate in
future trades arranged by the broker. The problem is exacerbated if,
as is likely, there are agency costs (which may cause brokers to mis-
represent the adverse selection risk for less-favored clients) or if it is
not possible for a broker to fully disclose trade-specific information.
It is reasonable to model these costs as an increasing function of the
number of counterparties located.9

In what follows, we consider cost functions of the form φ(n) =
δnγ , where to assure an interior solution we assume that δ > 0 and
γ ≥ 1. The constant δ is inversely related to the probability of locating
willing counterparties; γ reflects the returns to the search process,
with higher values implying diminishing returns to search. Suppose
the block trader contacts n counterparties to absorb the block. The

9 In addition, the time spent locating counterparties may be costly to the initiator. Our results
concerning block pricing are unaffected in this case, but we need to reinterpret the commission
schedule since these costs are not borne by the block broker.
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equilibrium price of the block solves the equation

n∑
i=1

qi(pb;Q) = −Q, (6)

where qi(pb;Q) is the potential trader’s demand function given by
Equation (5). Let pb(Q;n) denote the block price solving this equation
as a function of order size, Q, given the number of counterparties, n.

A competitive block broker facilitates the upstairs trade in such a
way as to maximize the net revenue of the initiator. More intensive
search decreases the overall price impact by increasing the number of
counterparties but also increases commission costs. As shown in the
Appendix, this trade-off implicitly defines the optimal search intensity
as a function of order size Q, denoted by n(Q). Let C (Q) = φ(n(Q))
denote the corresponding function relating total commission costs
to order size. Thus, the block price pb can be expressed as a func-
tion of order size alone, that is, pb(Q) = pb(Q;n(Q)).10 Note that
pb(Q) captures not only the temporary price concession demanded
by counterparties to accommodate the block trade, but also their per-
ceptions of the postblock price as a result of information conveyed
by order size. Finally, we close the model by describing the initiator’s
choice of order size.

1.2.3 The initiator. Given the strategies adopted by the traders and
the block broker, the initiator (indexed as agent 0) faces a price sched-
ule, denoted by pb(Q). In a rational expectations equilibrium, the
initiator’s choice of order size takes into account the expected price
impact of the trade, and the trade price in turn is consistent with pub-
lic beliefs about the initiator’s strategy and private information signals.
In other words, equilibrium is a fixed point in the space of continu-
ous functions such that the functionals describing the temporary and
permanent price impacts are consistent with the rational beliefs and
actions of all optimizing agents in the model.

To formalize this, suppose the initiator observes a private signal
regarding the value of the risky asset at time T . Let y denote the
realization of this signal, where we assume that y is drawn from a
normal distribution with mean equal to the realized liquidation value v
and variance σ 2

y . Then, using the properties of the normal distribution,
the expected value of the security from the initiator’s viewpoint is

10 We can handle the case where the block trader can act as a broker-dealer by positioning a part
of the block by treating the block trader as a counterparty that can be contacted at zero cost; this
benefits the initiator by reducing execution costs but does not affect the main elements of the
analysis.
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a weighted average of the prior mean and signal, E0[ṽ|y ] ≡ µ0 =
(1 − w0)µ + w0y, where the weight placed on the signal, w0, is the
ratio of the variance of the prior distribution to the sum of the variance
of the prior and the variance of the private information signal, that is,
w0 = σ 2

v /(σ
2
v + σ 2

y ) [see, e.g., DeGroot (1970)].
Like counterparties, the initiator has a utility function of the form

given by Equation (3). Let x denote the initiator’s (unobservable) hold-
ings of the risky asset, where (unconditionally) x is distributed nor-
mally with a mean normalized to zero. The existence of initial endow-
ments creates portfolio hedging motives for trade in addition to the
information motives discussed above.

Let W̃0 denote the future wealth of the initiator, where W̃0 = ṽ(Q+
x) + z0 − pb(Q)Q − C (Q). Substituting this into Equation (3) and
simplifying, the initiator’s maximization problem is

max
Q
µ0(Q + x)+ z0 − pb(Q)Q − C (Q)−

(ρ
2

)
σ 2

0 (Q + x)2, (7)

where σ 2
0 denotes the conditional variance of the asset’s value.

The initiator’s optimal order quantity is found by differentiating
Equation (7), which yields

µ0 − Qp′b(Q)− pb(Q)− C ′(Q)− ρσ 2
0 (Q + x) = 0. (8)

The initiator’s equilibrium order thus reflects a mix of information and
portfolio hedging motivations for trade. Consequently, order quantity
conveys a noisy signal to outsiders (the block trader and counter-
parties) about the initiator’s private information signal.

As the block trader and counterparties observe Q (but not y or
x) they cannot infer completely the private signal of the initiator.
However, since µ0 = (1 − w0)µ + w0y, these agents can form the
statistic s where

s = Qp′b(Q)+ pb(Q)+ C ′(Q)+ ρσ 2
0 Q − (1− w0)µ

w0
. (9)

Substituting Equation (8) into Equation (9), we see that the signal has
the form s = y + ζx , where ζ = −ρσ 2

0 /w0 is a constant. From the
perspective of an agent who cannot observe the initiator’s holdings, x ,
the signal s is an unbiased estimate of the true value v with variance
σ 2

y + ζ 2σ 2
x , where σ 2

x is the unconditional variance of the initiator’s
holdings.11

11 The initiator’s problem is similar to that of Glosten (1989) in that he has rational expectations
about how his order will be priced by the block trader. It differs in that the the price schedule
arises from the optimization by the block trader on behalf of the initator.
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The posttrade price is equal to the expectation of asset value con-
ditioned upon prior beliefs and the noisy estimate (inferred from the
observed order size) of the initiator’s private signal. Thus, p1 = Et1 [ṽ ] =
Etb [ṽ|Q].

Under our assumptions, the expected value of the asset, given the
order size, is given by

E [ṽ|Q] = p1(Q) = (1− w)µ+ ws = µ+ w(s − µ), (10)

where w = σ 2
v /(σ

2
v +σ 2

s ) is the weight placed on the information con-
tent of the signal and [following DeGroot (1970)] σ 2

s is the conditional
variance of the signal about v conveyed by order size.

Recall that the total price impact of the trade is the sum of the
temporary price effect (which represents the price pressure associated
with the block trade) and the permanent effect (which represents the
revision in public beliefs as a result of the block trade), that is, pb(Q) =
p1(Q) + τ(Q). Further, the permanent impact can be expressed as
π(Q) = p1(Q)−µ. Then, using Equations (9) and (10), we obtain the
following differential equation:

π(Q) = w

w0

(
Q(τ ′(Q)+ π ′(Q))+ τ(Q)+ π(Q)+ C ′(Q)+ ρσ 2

0 Q
)
.

(11)
The equilibrium price functionals τ(Q) and π(Q) and commission
schedule C (Q) must satisfy Equation (11) subject to the initial con-
dition π(0) = 0, that is, that there is no information revelation with-
out trade. The solutions completely characterize the equilibrium price
movements around an upstairs-negotiated block trade.

We show below that an equilibrium exists if the perceived need
for portfolio hedging is sufficiently large relative to the degree of
asymmetric information.

1.3 Equilibrium price paths
The following proposition characterizes the temporary price effects of
a block trade.

Proposition 1. In equilibrium, the temporary price component of an
upstairs-negotiated block trade is

τ(Q) = K1 sign(Q)|Q| γ−1
γ+1 , (12)

where K1 > 0 is a constant.

The temporary impact is positive for buys and negative for sells, but
the proposition also demonstrates that the absolute equilibrium tem-
porary impact is an increasing and strictly concave function of trade
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size. The only exception occurs when marginal search costs are con-
stant, so that the number of counterparties located is proportional to
trade size and the price impact is a constant. Intuitively, when the
number of counterparties is constant, the temporary impact is linear
in quantity because the aggregate inverse demand function is also
linear. With constant search costs, the optimal number of searches is
a linear function of the quantity traded, so that the temporary impact
is constant. With increasing search costs, the block trader will add
more counterparties if the reduction in the total dollar price impact
exceeds the marginal cost. Thus, as quantity rises, the optimal number
of counterparties increases, reducing the price impact on the entire
amount of the trade, producing the concave relation. The search-
brokerage aspect of the upstairs market mitigates the price impact of
the trade by intensifying the search for counterparties as trade size
increases, even if there are diminishing marginal returns to search.

The following result provides comparative statics results on the
temporary impact:

Proposition 2. For a given order size, the temporary price component
is positively related to the cost of locating counterparties, δ, the degree
of risk aversion, ρ, and the variance of the risky asset’s return, σ 2

v .

Proposition 2 is important for our subsequent empirical analysis of the
empirical determinants of the temporary impact. The temporary im-
pact, adjusted for trade size, will be larger for trades arranged through
brokers with high search costs or for securities where uncertainty is
large. The proposition may also help shed some light on the stylized
fact that the great majority of block trades are sells. The model ad-
mits the possibility that the costs of locating counterparties for buyer-
initiated trades are larger than for seller-initiated trades. This case is
realistic because of short-sale constraints and the difficulty in locating
traders who have large holdings of a particular asset. Indeed, it has
been argued that many financial intermediaries earn rents because it
is more costly to locate counterparties for buyer-initiated transactions
rather than seller-initiated transactions. If this is indeed the case, the
price effects of buyer- and seller-initiated transactions may be asym-
metric, possibly explaining some previous empirical findings.

The temporary impact is an implicit trading cost for the initiator,
who must also bear explicit commission costs. Commission costs in
our model are endogenously determined. The following proposition
characterizes these costs.

Proposition 3. Total commission costs are an increasing function of
order size

C (Q) = K2|Q|
2γ
γ+1 (13)
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where K2 > 0 is a constant that is positively related to search costs, risk
aversion, and the variability of the asset’s return.

Since commissions per share are given by C (Q)/|Q|, it follows directly
that per share commissions are constant when γ = 1 and increase
with trade size when γ > 1. Proposition 3 shows that commissions
per share are positively related to search costs, risk aversion, and the
variability of the asset’s return.

Proposition 3 has an important implication for empirical studies of
execution costs because it implies a systematic relation between ex-
plicit (i.e., commissions) and implicit (i.e., price impact) costs. This
relation is not intuitive. For example, it is natural to hypothesize that
there is a trade-off between commissions paid and the resulting price
impact of the trade; a trader can pay high commissions to obtain bet-
ter execution and hence lower implicit costs in the form of reduced
price impact. Indeed, such a trade-off drives our theoretical model of
the upstairs market. However, the equilibrium relation between com-
missions and price impact need not be negative. To see this, observe
from Propositions 1 and 3 that when γ > 1, larger orders result in
larger commissions per share and higher temporary impacts. In this
case, the sample correlation between these variables is positive, not
negative as one might expect. When γ = 1, both commissions per
share and the temporary price impact are constants independent of
size.12

The total price impact is the sum of the permanent and temporary
impacts. The following proposition characterizes the permanent price
impact of the trade.

Proposition 4. There exists a rational expectations equilibrium if the
unconditional variance of the initiator’s asset holdings is sufficiently
large relative to the precision of the private information signal. In
equilibrium, the permanent impact measured relative to the decision
price, π(Q), is given by

π(Q) = λ1Q + λ2 sign(Q)|Q| γ−1
γ+1 , (14)

where λ1 and λ2 are positive constants.

Proposition 4 shows that the permanent component, measured rela-
tive to the decision date, is an increasing (decreasing) and concave
(convex) function of order size for buys (sells). The permanent im-
pact is a linear function of trade size only in the special case with

12 If φ(n) represents implicit costs to the initiator arising from time-consuming search, the results
reflecting the pricing of the block are unaffected but the commission schedule reflects only those
costs incurred by the block broker.
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constant returns to search. The nonlinearity in the permanent impact
arises from the nonlinear form of the temporary impact. In turn, the
nonlinearity in the temporary impact arises from the search-brokerage
nature of the upstairs market.

Proposition 4 has some additional implications for empirical studies
which measure the permanent impact relative to the pretrade price
instead of the decision price. As the process of negotiating an up-
stairs trade is time consuming, information on the impending block
trade may leak to the market between times td and tb , affecting p0

and hence biasing the traditional estimate of the permanent impact.
To investigate this intuition more formally, suppose outside agents re-
ceive noisy signals about the size of the block trade before time t0. On
the basis of these signals, suppose that public information concern-
ing the size of the impending block is summarized by a distribution
function, denoted by F (·). Using our definition of the permanent im-
pact, E [ṽ|Q] = π(Q)+ pd , so that p0 = Et0 [ṽ ] = ∫ π(z)dF (z)+µ. Let
π0 = p1 − p0 denote the usual measure of the permanent impact so
that

π0 = π(Q)−
∫
π(z)dF (z). (15)

This representation shows that the permanent impact measured rela-
tive to the pretrade date, π0, will generally understate the true revision
in beliefs induced by the block trade. Only when the block is com-
pletely unanticipated will the bias be zero, but this appears unlikely
since the block facilitation process may result in information leakage.
The extent of this mismeasurement is an empirical question, one we
address below.

Together, Propositions 1 and 4 provide a complete description of
the price impact of an upstairs trade. The price functionals described
are equilibrium responses when the degree of information asymmetry
is not unduly severe, that is, when there are sufficient noninforma-
tional motives for trade. This condition is consistent with the observa-
tion that upstairs intermediaries avoid dealing with traders who may
possess private information while cultivating relationships with traders
who have portfolio reasons for trading. In the remainder of this article,
we investigate the hypotheses suggested by Propositions 1 through 4
using data on block transactions arranged in the upstairs market.

2. Empirical Evidence on Upstairs Trade

2.1 The data
The data file used is constructed from the trading history of a passive
investment management firm, Dimensional Fund Advisors, Inc. (DFA).
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The file contains trade dates, trade prices, number of shares traded,
and commissions paid for all upstairs-negotiated trades in which the
firm participated during the period July 1985 to December 1992. The
firm selectively takes the opposite side of large trades initiated by
others in the upstairs market, trading stocks that are on their buy
or sell list. In this respect, the firm is a counterparty, not a block
trader, in the terms of our model. DFA’s buy list consists of all stocks
that reside in the smallest half of market capitalization. The cutoff is
determined by the median market capitalization for stocks trading on
the NYSE, but the list also includes AMEX and OTC National Market
System (NMS) stocks that fall into this category. The trades are not
time-stamped (within the day), although given the normal volume
of trading in these shares the block transactions are easily identifiable
on intraday transactions tapes. The sample used here consists of 4,688
seller-initiated blocks and 937 buyer-initiated blocks.

It is worth emphasizing the unique aspects of these data. First, all
the trades in our sample are upstairs trades. In particular, we do not
need to use an arbitrary definition based on order size to infer the
mechanism in which trades originate. Second, the firm has a policy
of taking the entire amount of the block, so that order fragmentation
is not an issue. However, this policy does require the firm to pay or
receive the potential prices offered by other traders who would break
up the block to reduce the impact. Essentially, DFA must match the
competitively determined price schedule (based on multiparty search)
derived above to obtain the trade. Paying such a premium may make
sense for this firm because it follows a simple passive trading strategy
and can time its trades. Third, the data employed here identify the
trade as either buyer- or seller-initiated so that there is no possibility
of systematic errors from incorrect inferences about trade initiation.
Finally, whereas previous studies of price effects of block transactions
in U.S. markets generally examine only block trades on the NYSE, the
blocks examined here are from the NYSE, AMEX, and NASDAQ NMS.

To examine the price effects associated with our sample of block
trades, we use closing prices from the CRSP daily stock files to com-
pute the temporary and permanent impacts. Since infrequent trading
is prevalent in our sample of small stocks (our trades are sometimes
the only trade of the day), the use of closing prices instead of intraday
pre- and postblock prices will not likely influence our computed price
impacts adversely. Additionally, nearly 15 percent of our block trades
are reported as the closing price on the CRSP file for that day, indicat-
ing that they represent the last (and, perhaps, only) trade of the day.
For this reason, we measure the temporary and permanent impacts
using the closing price on the trading day after the block. For our sam-
ple of 5,625 block trades, less than one-half of 1 percent of the stocks
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did not trade on the day following the block trade.13 Specifically, the
temporary price impact is defined as − ln(Pt+1/Ptrade), where Pt+1 is
the closing price on the day following the block, Ptrade is the nego-
tiated trade price, and date t is the block trade date. The permanent
price impact is defined as ln(Pt+1/Pt−n), where Pt−n is the closing
price on the nth trading day before the trade date. All non-trade-date
price movements are adjusted for market movements by subtracting
the equal-weighted CRSP NYSE-AMEX market index for the NYSE and
AMEX stock trades, and subtracting the CRSP NASDAQ index return
for the NASDAQ stock trades, without any adjustment for the stock’s
market beta in either case.

Recall that the block price effects described in Propositions 1 and
4 are stated in dollar price changes, whereas the empirical analysis
below is conducted with returns. Our predictions regarding the effects
of trade size on the price effects are unaffected by using a definition in
returns form. However, the predictions relating to prices require more
care. The permanent and temporary components are hypothesized to
be decreasing functions of price when they are defined in absolute
terms. Therefore, defining them in return form (dividing by price)
does not alter our hypotheses about the effects of price levels on
these effects.

Before describing our results, we must address a potential difficulty:
the empirical hypotheses suggested by the model relate to a partic-
ular stock, whereas our empirical analysis is cross-sectional. How-
ever, the stocks in our sample are relatively homogeneous since they
are all smaller NYSE stocks or comparably sized AMEX or OTC-NMS
stocks. Further, to the extent that there is cross-stock heterogeneity,
the model’s predictions are tested in such a way as to minimize these
distortions, for example, by scaling trade size by shares outstanding.
Third, we performed tests for subsamples of the data sorted by size
and price to check the robustness of the results; there was not a sig-
nificant difference in using finer portfolios of stocks for analysis.

2.2 Summary results: seller-initiated trades
Tables 1 and 2 contain summary statistics for the sample of block
trades used here. Table 1 reports results for the seller-initiated blocks,
Table 2 for the buyer-initiated blocks. The tables contain estimated
means (standard errors) of temporary and permanent price impacts
for the sample. Also included are the sample medians for the trade

13 There is also the possibility of bid-ask bias as suggested by Blume and Stambaugh (1983), which
would tend to reduce the measured price impact. However, when impacts are defined in level
form, there is no systematic bid-ask bias. Since our results also hold for price changes, the potential
biases appear to be small.
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price, market capitalization, number of shares in the block, and the
number of shares in the block expressed as a percent of the total
number of shares outstanding, as well as the number of blocks.

Panel A of Table 1 reports summary statistics measured within each
sample year. Panel B reports statistics separately for listed (NYSE and
AMEX) and NASDAQ trades, and also across all markets for the en-
tire period. Consistent with previous research, there appears to be a
large temporary price effect (−2.84 percent) associated with the block
trade. This block-day price change is more dramatic than documented
previously because of the illiquid markets in which the stocks in our
study trade. The median price of the blocks here is $8.38 for firms with
a median market capitalization of $77 million. Some blocks are smaller
than 10,000 shares, the definition applied by the NYSE in classifying
block transactions. We include all trades of at least 5,000 shares, since
a trade of this magnitude in a very thinly traded stock may represent
an extremely large trade.

There is not much year-to-year variation in the estimated temporary
impacts, although there does appear to be a tendency for the blocks
in 1985 and 1986 to display smaller temporary price effects—about
1.0 to 1.5 percent compared to almost 3.0 percent in the last 6 years
in our sample. The results for the separate markets, reported in panel
B, tell basically the same story. Interestingly, the NASDAQ blocks
display larger temporary effects (−3.28 percent) than the NYSE and
AMEX blocks (−1.86 percent), although the market capitalizations of
the NASDAQ firms in our sample are generally smaller and the size
of the NASDAQ blocks are larger when computed as a percentage of
total outstanding shares. These differences in liquidity may reflect the
differences in trading arrangements between exchanges and the NAS-
DAQ. In particular, blocks executed on exchanges must be exposed
to the public for possible price improvement through the auction pro-
cess, but this is not the case with NASDAQ stocks. Since outside partic-
ipation increases the potential number of counterparties to the block,
the price impacts may be lower on exchanges than on NASDAQ for
comparable trades. We estimate regressions below that test for differ-
ences across market mechanisms while controlling for price and trade
size.

To detect the possible influence of information leakage prior to the
trade on the measurement of the permanent impact, we report three
estimates of the permanent price impact that incorporate different
amounts of pretrade price movement. Recall that the permanent price
impact for trade i is defined as ln(Pi,t+1/Pi,t−n), where Pi,t−n is the
closing price for stock i on the nth trading day before the trade date,
and that all non-trade-date price movements are adjusted for market
movements by subtracting the market return over the same interval
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from the return for stock i. We report the trade-date permanent impact
which incorporates no pretrade information (identified in the table as
covering the period t−1 to t+1), a permanent impact that incorporates
1 week of pretrade price movements (t − 6 to t + 1), and one that
incorporates 4 weeks of pretrade price movements (t − 22 to t + 1).

The estimates of the trade-date permanent impact are negative and
significant, −1.50 percent when averaged over all markets and years,
but substantially smaller than the corresponding temporary impact.
These findings are consistent with previous research. In contrast to the
results for the temporary impacts, the permanent impacts are larger
for NYSE and AMEX trades (−1.86 percent) than for the NASDAQ
trades (−1.37 percent), suggesting that the listed block trades in our
sample tend to be more informationally motivated than the NASDAQ
trades.

Adjusted for market movements, the 1-week permanent impact is
−4.32 percent and the 4-week permanent impact is −7.40 percent.
These estimates are both statistically and economically significant.
The differences in the 1-week and 4-week permanent impacts are
consistent with the notion that the market incorporates some of the
information associated with the block prior to the actual transaction as
it is shopped upstairs. This is also consistent with Seppi (1992a), who
finds that block price changes reflect the revelation of private infor-
mation about surprises in earnings announcements. The downward
movement in price before the block suggests that the permanent price
effects computed in previous studies, using only prices on the day of
the block trade, may reflect a lower bound on the actual permanent
effects associated with the transaction. However, such information
leakage may be less of a problem for the larger, more liquid stocks
examined in most previous studies. It is also possible that the differ-
ences in the 1-week and 4-week excess returns reflects price pressure
from block trades in related stocks or from sales of smaller blocks to
other upstairs traders.

An alternative explanation for the pretrade price movement is that
traders, on average, place buy (sell) orders following positive (nega-
tive) returns. Nelling (1992) uses our data described above, and addi-
tional information on how long each block was “shopped” (i.e., when
the initiator first announced an intention to trade by submitting indica-
tions to an electronic bulletin board), to distinguish these hypotheses.
Nelling finds strong support for the hypothesis that the pretrade price
movement reflects leakage in the upstairs market.14

14 See also Seppi (1992b) who develops a regression measure to capture the permanent price impact
associated with large trades and addresses the issue of leakage in the context of this measure.
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Figure 1
Price behavior associated with seller-initiated blocks
The price path is plotted for 2 months (42 trading days) surrounding the trade day for the period
July 1985 to December 1992. The series represent the average price behavior for the separate
samples of NYSE-AMEX and NASDAQ NMS blocks trades. We compute each series using the
following steps: (1) align the daily returns for each of the block firms around the block trade
day; (2) compute a value-weighted return r vw

t , across all firms, for each day t ; (3) create a wealth
series, with initial value V−22 = 1, as Vt = Vt−1(1+ r vw

t ).

These findings for the temporary and permanent price effects are
illustrated graphically in Figure 1, which contains the average price
behavior for the seller-initiated blocks for the 2 months surrounding
the block trade date. To compute the series, we first computed market-
adjusted daily returns for each block-firm’s stock for the 2 months
surrounding the block day. Value-weighted market-adjusted returns
were then computed across all stocks for each day in the 2-month
period, and a wealth series was created by initially “investing” $1 and
recording the day-by-day movements in this wealth index. The spike
on the block day (the temporary price effect) is an obvious departure
from the downward trend that these stocks experience in the month
prior to the block trade. After the block trade, there is no obvious
trend in the returns of the seller-initiated blocks.

Finally, we note that for this sample, the use of the tick test to iden-
tify trades as seller-initiated transactions (i.e., by comparing the block
price to the previous day’s closing price) would result in 339 seller-
initiated trades (about 7.2 percent of the sample) not being correctly
classified. The average total price impact for the 4,349 seller-initiated
blocks that would have been correctly classified by this tick rule is 4.76
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percent, a significant 41 basis points greater than the 4.35 percent total
impact for the entire sample of seller-initiated trades.

2.3 Summary results: buyer-initiated trades
Table 2 reports summary statistics for the sample of buyer-initiated
blocks for the entire sample and separately for each year and by ex-
change. The table provides an interesting contrast with Table 1 for
the sample of seller-initiated trades. First, there are far fewer buyer-
initiated trades than seller-initiated trades. Buyer-initiated trades con-
stitute approximately 20 percent of the total sample; these proportions
are very similar to the proportions reported in other studies of large
trades. Second, the buyer-initiated blocks in Table 2 tend to be for
stocks with larger prices and market capitalization than those in Ta-
ble 1, since the firm’s sell list will tend to contain larger stocks that are
exiting the small capitalization universe. Third, the permanent price
effects are in the hypothesized direction, but the estimates that incor-
porate longer pretrade periods tend to be smaller in magnitude than
the permanent effects for the seller-initiated trades in Table 1. Finally,
only after 1990 is the temporary impact the right sign for this sample of
buyer-initiated blocks, but the magnitudes of the temporary impacts
are very small and statistically insignificant.

The asymmetry in the temporary components of buyer- versus
seller-initiated trades is puzzling. Ball and Finn (1989), Chan and
Lakonishok (1993b), Holthausen, Leftwich, and Mayers (1987), Kraus
and Stoll (1972), and Scholes (1972) also find evidence suggesting
asymmetric responses. However, it should be noted that the tempo-
rary impacts for trades identified as buyer initiated in these studies are
positive. The fact that the temporary impacts had the wrong sign in
the early years of our sample is consistent with the idea that the firm
incorrectly assessed the probabilities of dealing with agents with pri-
vate information in selling stock. Thus, while DFA may sell to buying
initiators at a price above the last trading price, the price continues to
rise following the trade; equivalently, the price set for the trade is too
low relative to the market’s expectation of the trade price. This may
occur because the firm is eager to sell a stock that exits its universe
for liquidity reasons, and this passive strategy is known to potential
buyers. This option is also present for a potential seller of a small
capitalization stock, but if the firm already has a position in a stock,
it may not elect to purchase more stock when the seller wishes to
trade. By contrast, potential traders can compute when a particular
stock reaches the firm’s sell list using public information. Thus, the
temporary impact is subsumed into the permanent impact for buyer-
initiated transactions. The persistent upward postblock price move-
ment for nearly 3 weeks for the buyer-initiated blocks documented
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Figure 2
Price behavior associated with buyer-initiated blocks
The price path is plotted for 2 months (42 trading days) surrounding the trade day for the period
July 1985 to December 1992. The series represent the average price behavior for the separate
samples of NYSE-AMEX and NASDAQ NMS blocks trades. We compute each series using the
following steps: (1) align the daily returns for each of the block firms around the block trade
day; (2) compute a value-weighted return r vw

t , across all firms, for each day t ; (3) create a wealth
series, with initial value V−22 = 1, as Vt = Vt−1(1+ r vw

t ).

in Figure 2 reinforces the notion that the buyers may have been
informationally motivated. These results demonstrate the difficulty
in assessing the true desired trade quantity of a buyer: the initiator
may continue to purchase stock, despite providing assurances to the
contrary.

The direction of the temporary impacts suggests the use of the
tick test to identify trades as buyer-initiated transactions may pro-
duce biases; indeed, we find that 191 buyer-initiated trades (about
20.4 percent of the sample) would not be correctly classified with
this methodology. The average total price impact for the 746 buyer-
initiated blocks that would have been identified by the tick rule is
2.01 percent, 56 basis points greater than the 1.45 percent total price
impact for the entire sample of buyer-initiated trades.15

15 Holthausen, Leftwich, and Mayers (1990) examine a subset of their sample of trades to verify the
accuracy of their tick classification scheme and find that the tick test correctly classifies only 53
percent of their trades; Robinson and White (1991) and Chan and Lakonishok (1993b), using data
that identifies buyer- and seller-initiated transactions, report very similar results.
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Table 3
The Relation between Percentage Price Changes and Block Size

Permanent impact measured Postblock
over the period: price change

Trade (t − 1 to (t − 6 to (t − 22 to (t + 2 to
size1 Temporary impact t + 1) t + 1) t + 1) t + 21)

A. Seller-initiated blocks
0.01–0.15 −1.48 −1.56 −3.58 −3.72 0.19

(0.13) (0.14) (0.29) (0.70) (0.41)
0.15–0.27 −2.21 −1.51 −4.38 −5.99 −1.02

(0.14) (0.15) (0.22) (0.54) (0.43)
0.27–0.46 −2.76 −1.28 −3.91 −6.84 −1.15

(0.15) (0.16) (0.23) (0.45) (0.43)
0.46–0.82 −3.31 −1.54 −4.67 −7.97 −1.90

(0.17) (0.17) (0.26) (0.43) (0.44)
0.82–7.86 −4.57 −1.64 −4.78 −9.08 −1.76

(0.20) (0.19) (0.28) (0.47) (0.46)

B. Buyer-initiated blocks
0.01–0.07 0.23 1.22 2.70 4.96 −1.89

(0.19) (0.26) (0.45) (1.36) (1.48)
0.07–0.13 0.28 1.19 2.47 5.04 −2.18

(0.19) (0.22) (0.41) (0.93) (1.28)
0.13–0.19 −0.38 1.85 2.99 6.18 0.32

(0.22) (0.29) (0.54) (1.05) (0.87)
0.19–0.35 −0.42 1.94 3.26 6.46 0.48

(0.27) (0.26) (0.70) (1.30) (0.85)
0.35–5.48 −0.43 1.77 2.78 3.26 1.68

(0.23) (0.27) (0.50) (0.70) (0.79)

The table presents mean temporary, permanent and postblock percentage price changes for
upstairs-negotiated block trades for NYSE, AMEX, and NASDAQ stocks for the period July 1985
to December 1992. The temporary price impact is defined as − ln(Pt+1/Ptrade), where Pt+1 is the
closing price on the day following the block, Ptrade is the negotiated block price, and date t is the
block trade date. The permanent price impact is defined as ln(Pt+1/Pt−n), where Pt−n is the closing
price on the nth day before the trade date. All non-trade-date price movements are adjusted for
market movements. The equal-weighted CRSP NYSE-AMEX market index is used to adjust the
NYSE and AMEX stock trades, and the CRSP NASDAQ index is used to adjust the NASDAQ stock
trades. The adjustment is made by subtracting the relevant market index return from the stock’s
return, without any adjustment for the stock’s market beta. These impacts are stated in percent,
and standard errors are reported in parentheses. Block size is defined as the number of shares
traded stated as a percentage of the total number of shares outstanding.
1 Each classification category represents a quintile based on a sort of the data based on trade size.
Each category contains 937 observations in panel A and 187 observations in panel B.

3. The Determinants of Block Price Effects

3.1 Descriptive statistics
To measure the determinants of block price effects, we first simply
divide the sample of blocks according to block size measured by
number of shares traded as a percent of the total number of shares
outstanding. Separately for the buys and sells, trades are sorted on
trade size and divided into quintiles. Average temporary and perma-
nent impacts are computed for each quintile. Table 3A reports re-
sults for seller-initiated blocks and Table 3B reports the buyer-initiated
blocks.

The findings for the seller-initiated blocks in Table 3A show that the
temporary price impacts are positively related to the size of the block.
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Proposition 1 predicts that the absolute value of the temporary effect is
positively related to trade size, so this finding confirms the model and
is also consistent with previous research.16 Proposition 4 predicts no
particular relation between the permanent effect, as measured relative
to the previous trade date, and the size of the trade. We find no
obvious relation between the trade-day permanent impact (t − 1 to
t + 1) and trade size for the seller-initiated blocks. This finding is
consistent with most results in the literature.17

Proposition 4 also implies that measurement of the permanent com-
ponent on the block date may understate the information effect if the
block was extensively shopped prior to actual execution. If that were
true, then information is revealed in the preblock price behavior, and
the permanent effect measured relative to the decision price is an in-
creasing function of trade size. Since we don’t know precisely when
the initiators made the decision to sell the blocks in our sample, we
report two additional estimates of the permanent impact: one that in-
corporates 1 week of pretrade price movements (t − 6 to t + 1) and
one that incorporates 4 weeks of pretrade price movements (t −22 to
t+1). While we don’t observe much of a relation between the 1-week
permanent impact and trade size, the 4-week permanent impacts are
strongly related to trade size, suggesting that the larger the block, the
greater is the tendency for the information component to be incor-
porated into price prior to actual execution of the block. In a cross-
sectional regression of the pretrade price change on the stock price
and trade size (measured as a percentage of outstanding shares), the
coefficient on trade size is−0.0112 with a t -value of−3.77. Intuitively,
the very fact that a block trade is impending conveys information to
the market (the so-called over-hang), and the larger the block, the
greater the information contained in that signal. Consistent with this
conjecture, Nelling (1992) finds strong support for the hypothesis that

16 Although the temporary price impacts reported in this study reflect in part the bid-ask spread, the
estimates contain much more information about the costs of large trades than the spread alone
conveys, for several reasons. First, we find a significant relation between trade size and temporary
impacts. While a relation between reported spreads and market capitalization has been widely
documented, there is no reason to believe that reported spreads are related to the size of individual
trades, and there is no relation between trade size and market capitalization in our sample. Table
4 contains regression results where we explicitly control for share price, a proxy for market cap,
when estimating a significant relation between trade size and temporary impact. Second, for stocks
with similar market capitalizations as the stocks in our sample, reported bid-ask spreads are small
in comparison to our estimates of temporary impacts. For example, Keim (1989) reports that half
of the median reported bid-ask spread for NYSE, AMEX, and NASDAQ stocks in the ninth decile
of size (the average market cap of $77 million for our sample falls in this decile) ranges from 0.9
to 1.4 percent, less than the temporary impacts we report in Table 3 for the smallest trades in our
sample. Further, effective bid-ask spreads are known to be considerably smaller than reported
spreads.

17 The exception is Kraus and Stoll (1972).
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the relation between trade size and pretrade returns reflects leakage
in the upstairs market.

The results for the buyer-initiated blocks, given in Table 3B, are
less clear. As discussed above in Table 2, we find no evidence of
significant temporary impacts for the buyer-initiated blocks and, as
a result, no relation between trade size and temporary impacts. Al-
though the trade-day permanent impacts appear to be strongly related
to trade size, the 1-week and 4-week permanent impacts exhibit no
such relation. Apparently for the buyer-initiated trades, there is less
information leakage about the impending trade prior to the trade so
that a significant relation between the permanent impact and trade
size remains at the time of the trade. One explanation may be that
block purchases, since they involve negotiations primarily with large
current stockholders, occur under conditions of greater secrecy than
block sales. Although there is evidence of significant pretrade price
movement in Table 3B, it is not significantly related to trade size. The
temporary impacts for buyer-initiated trades indicate that, in general,
the posttrade price was at or above the block price. In addition, there
is evidence of a significant relation between posttrade market-adjusted
price movements and trade size, suggesting that much information
contained in the trade was not incorporated into the price until after
the trade, and that this posttrade “information component” is related
to trade size. As we noted above, this finding can be explained if
DFA underestimated the signal content of buyer-initiated trades or
was willing to sell stock at a lower premium than expected by the
market because of its passive trading strategy. In the case of seller-
initiated blocks, however, the firm selects among a large number of
stocks that fall into its trading universe.

3.2 Regression results
In this subsection we estimate regressions for the temporary and per-
manent impacts to confirm the summary measures reported in Table 3.
We begin by estimating the following regression for the temporary im-
pacts:

τi = β0+β1DOT C
i +β2PI N Vi+β3qi+β4q2

i +β5q3
i +β6D3rd

i +εi, (16)

where τi = − ln(Pi,t+1/Pi,trade) is the temporary impact measured in
(decimal) return form, DOT C

i is a dummy variable that equals one if
block trade i is an OTC stock and zero otherwise, PI N Vi is the inverse
of the trade price, qi is the (absolute) number of shares traded divided
by the number of shares outstanding, and D3rd

i equals one if block
trade i was done by a third market broker and zero otherwise.
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The regression, Equation (16), is motivated by our model. The co-
efficient β1 allows us to test for systematic differences in the price
impacts of listed versus NASDAQ transactions. The coefficient β2 cap-
tures the effect of price on the temporary component. With price
acting as a proxy for market value or liquidity, the effect should be
negative. Proposition 1 predicts that the absolute value of the tempo-
rary impact is an increasing and concave function of trade size. By
including trade size and higher powers of trade size, we can examine
this hypothesis in a general way. In the case of a seller-initiated trade,
for example, we expect β3 < 0, β4 > 0, and β5 < 0. We can distinguish
trades executed in the upstairs market through exchange-member bro-
kers from those executed by third-market (nonexchange member)
brokers. Any differences in the ability of exchange and nonexchange
brokers to provide upstairs intermediation will be captured in the
coefficient β6.

Table 4A reports estimates of Equation (16). The first regression
in panel A is for seller-initiated transactions, which comprise almost
80 percent of our sample. The coefficient of the NASDAQ dummy
variable, β1, is significantly negative, suggesting that temporary costs
are higher (for seller-initiated transactions, the temporary impact is
negative) for nonlisted stock trades. The results show that there is
a significant inverse relation between the temporary impact and the
price level. This finding is consistent with our hypotheses since higher
priced stocks tend to be associated with larger market capitalizations,
making it easier and cheaper to find a counterparty for the trade.
Further, more information may be available for higher priced stocks,
implying counterparties take larger opposing positions, reducing the
temporary impact.

Turning to the effect of trade size, we find that the magnitude of the
temporary impact is significantly related to trade size, as shown by the
negative and significant estimate of β3. Additionally, β4 is significantly
positive, consistent with the prediction of Proposition 1 in which the
relation between temporary impacts and trade size is nonlinear. Al-
though β5 is negative as predicted, it is insignificant. The bounded
concave relation implied by the regression estimates in Table 4A is
graphically depicted in Figure 3 for the relevant range of trade size for
our sample. Finally, the coefficient on the third-market broker vari-
able is insignificant, indicating that the magnitude of the temporary
impact is not affected by the choice of the broker.18

The second regression in panel A contains results for the temporary

18 We also tested for interactions between order size and broker type, but these results merely
confirmed that the choice of broker has little effect on liquidity costs.

27



The Review of Financial Studies / v 9 n 1 1996

Table 4
The Determinants of the Price Impacts for Block Trades

The parameter estimates in the table are for the following model1 estimated over
the period July 1985 to December 1992:

yi = β0 + β1D
OTC
i + β2PINVi + β3qi + β4q

2
i + β5q

3
i + β6D

3rd
i + β7R

Post
i + ei .

Adjusted
β0 β1 β2 β3 β4 β5 β6 β7 R2

A. Temporary impact (yi = τi)
2

Seller-initiated

0.0081 −0.0081 −0.1354 −0.0201 0.0041 −0.0003 −0.0022 — .163
(0.0021)3 (0.0016) (0.0126) (0.0037) (0.0019) (0.0002) (0.0016)

Buyer-initiated

0.0012 0.0007 0.0420 −0.0252 0.0156 −0.0023 −0.0019 — .009
(0.0029) (0.0021) (0.0341) (0.0072) (0.0046) (0.0008) (0.0021)

B. Permanent impact (yi = πi)
2

Seller-initiated

−0.0590 0.0167 −0.0928 −0.0230 0.0019 0.0003 −0.0029 −0.0471 .020
(0.0052) (0.0044) (0.0182) (0.0101) (0.0051) (0.0006) (0.0042) (0.0135)

Buyer-initiated

0.0299 0.0366 −0.0967 0.0187 −0.0182 0.0030 0.0117 −0.0142 .014
(0.0113) (0.0096) (0.1055) (0.0268) (0.0158) (0.0025) (0.0087) (0.0208)

1 The variables in the model are:

τi = − ln(Pi,t+1/Pi,trade)

πi = ln(Pi,t+1/Pi,t−22)

DOTC
i = 1 if block trade i is a NASDAQ stock

= 0 otherwise

PINVi = 1/Pib

qi = [(number of shares traded)/(total shares outstanding)] · 100 (absolute value)

D3rd
i = 1 if block trade i was done by a 3rd market broker

= 0 otherwise

RPost
i = ln(Pi,t+21/Pi,t+2)

2 All non-trade-date price movements are adjusted for market movements. The equal-weighted
CRSP NYSE-AMEX market index is used to adjust the NYSE and AMEX stock trades, and the CRSP
NASDAQ index is used to adjust the NASDAQ stock trades.

3 The numbers in parentheses are heteroscedasticity-consistent standard errors.

impacts for buyer-initiated trades. Unlike the sample of seller-initiated
blocks, the coefficients on both the NASDAQ and price variables are
insignificantly different from zero, possibly because of the smaller
sample size. The coefficient on the third-market broker variable is
also insignificant, again suggesting that the broker type has little effect
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Figure 3
Relation between temporary price impacts of seller-initiated blocks and trade size
The plot is generated using the estimated coefficients from Equation (10) over the relevant range
of trade size for our sample of block trades for NASDAQ block trades (DOTC = 1) arranged
by exchange-member brokers (D3rd = 0). Trade size is defined as the number of shares traded
divided by the total outstanding shares, stated in percent. The median share price for our sample
($8.375) is used in the calculations. The time period is July 1985 to December 1992.

on liquidity. Finally, the coefficients on the trade size variables are
significantly different from zero, but are exactly the reverse in sign of
our predictions.

Larger trade sizes appear to reduce the temporary price impact.
There are two possible explanations for this finding. First, the find-
ing is possibly due to our confounding the identity of the initiator
for these trades. Participants in the upstairs market know the identity
and trading strategy of the investment management firm from whom
we obtained these data. Consequently, when a stock moves out of
the firm’s trading universe, other traders know the firm has liquidity
motivations for selling and submit buy orders. In this case, although a
trade may be classified as buyer initiated, the trade was really triggered
by the firm’s own trading strategy. The negative temporary impacts
for buyer-initiated trades may be explained by this argument, which
also provides an explanation for the seemingly anomalous findings
of Table 4A. Indeed, blocks of the same size may have very differ-
ent price impacts if outsiders can infer part of the motivations for
trade. For example, a large order placed by a pension fund that fre-
quently rebalances its portfolio may have small price effects. Second,
as noted earlier, this finding is also consistent with the firm incorrectly
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assessing the probability that a buyer-initiated trade was information-
ally motivated. That is, the estimated relation may be confounding the
temporary and permanent components of the trade impact.19

Figure 1 suggests that using the date t − 1 price to proxy for p0 in
computing the permanent impact may seriously understate the mag-
nitude of this component, because the market impounds information
conveyed by the impending block well before the trade. Accordingly,
in our test of the information component of the trade, we measure
the permanent impact using the price that prevailed 22 days before
the block was traded. Table 4B contains results from estimating the
following equation:

πi = β0 + β1DOT C
i + β2PI N Vi + β3qi + β4q2

i + β5q3
i

+ β6D3rd
i + β7RPost

i + εi, (17)

where the dependent variable is the permanent impact in return (dec-
imal) form, i.e., πi = ln(Pt+1/Pt−22), and the posttrade return RPost

i
is equal to ln(Pt+21/Pt+2), where Pt+n is the closing price on the nth
trading day before or after the trade date. Recall that all non-trade-date
price movements are adjusted for market movements by subtracting
the relevant market price index from the stock’s return.

The results in panel B show that the magnitude of the seller-initiated
permanent impact is significantly greater for exchange-listed stocks
(see also Figure 1) and inversely related to the price of the security.
We find evidence that larger trade sizes imply higher permanent im-
pacts for the seller-initiated trades, but although our model predicts a
nonlinear response, the coefficients β4 and β5 are insignificant.20 The
coefficient on the third-market broker variable β6 is again statistically
insignificant. Interestingly, the coefficient on the posttrade return vari-
able is negative and significant, indicating that a significant portion of
the negative pretrade price movement for some trades is reversed af-
ter the trade. This finding suggests that some of the pretrade price
movement reflects price pressure effects that are temporary in nature.

19 When we estimate the regression for buyer-initiated temporary impacts using only those impacts
with the correct sign, the coefficients on all trades size variables are insignificantly different from
zero.

20 When the permanent impact was measured using the previous day’s price as the base, the re-
gression provided little explanatory power; further, the magnitude of the impact was not related
to trade size. This finding is consistent with our earlier claim that studies of price impacts that
ignore the effect of the pretrade “overhang” may seriously understate the permanent impacts of
the trade.
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The estimates for the permanent impact regression for the buyer-
initiated trades indicate that permanent effects are significantly larger
for NASDAQ trades, but the remaining coefficients are all insignifi-
cantly different from zero. The lack of statistical significance of trade
size is consistent with the buyer-initiated trades being perceived as
largely liquidity motivated.21

To summarize, the results for seller-initiated trades provide strong
support for our conjectures. The results for buyer-initiated trades,
however, are not so strong, possibly because there are far fewer buys
than sells or because of systematic differences in the pricing of buyer-
initiated versus seller-initiated trades. The implications of our results
for large upstairs trades may be useful for empirical studies of price
impacts in dealer markets. Specifically, researchers need to be care-
ful about assumptions of linearity of the relation between temporary
impact and trade size when the range of trade size under study in-
cludes very large trades that were likely to have been negotiated in
the upstairs market.22

4. Conclusions

A significant fraction of large-block trades in U.S. equities is accom-
plished through the upstairs market. Yet despite its importance as
a source of liquidity in equity markets, the upstairs mechanism has
been largely overlooked in previous studies. Further, previous empir-
ical studies of large transactions identify trades by their size, not by
the mechanism in which they originate.

As the majority of block trades occur in the downstairs market, the
inability to distinguish trades facilitated in the upstairs market limits
our understanding of this mechanism. This problem is compounded
by the fact that the data used in previous studies generally do not
identify a trade as buyer or seller initiated, and the trades examined
may be parts of still larger orders. Given these deficiencies, even basic
empirical questions about the upstairs market remain unanswered.
This article’s objective is to analyze, both theoretically and empirically,

21 It is possible that the magnitude of the permanent impact depends on whether the trade is buyer
or seller initiated. For example, many block traders keep detailed records of the stock holdings
of large investors. Thus, the block trader may be more likely to ascribe liquidity motives to a sell
order from an initiator whose total stockholdings are large relative to the order. With buy orders,
it may be more difficult to discern liquidity motives for trade, especially if the initiator has no
current stockholdings.

22 For example, Hausman, Lo, and MacKinlay (1992) use an ordered probit model to analyze intraday
price movements. They report that in order to achieve a reasonable fit for their model they had
to truncate large trades in addition to taking a logarithmic transformation of order size. Other
researchers, for example, Glosten and Harris (1988), have noted that the estimated effect of
quantity on price is lower than expected.
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the effect of large transactions arranged in the upstairs market on stock
prices.

We develop a model of the upstairs market that provides theoret-
ical representations of the price effects around an upstairs trade. We
investigate the model’s predictions with unique data obtained from a
trader of small, illiquid stocks in the upstairs market. The data cover
5,625 block trades during the period 1985 to 1992. Unlike previous
studies, all the trades in our database are negotiated upstairs and are
identified as buyer or seller initiated. As a result, we view our findings
as a more accurate characterization of the operation of the upstairs
market and its effect on the costs of trading large blocks of stock.

We find that the temporary price impact for seller-initiated trades is
positively and significantly related to trade size, and negatively related
to price. The impacts for NASDAQ trades are significantly larger than
the impacts for comparable trades on exchanges where block trades
on exchanges must be exposed to the floor for possible price improve-
ment. There is also evidence that the temporary price impact of block
trades is a concave function of order size, as predicted by the model.
This finding suggests that we exercise care in modeling the relation
between price impact and trade size when trades include large-block
trades that were likely to have been negotiated in the upstairs market.
We also find significant pretrade (net-of-market) price movements that
are related to the size of the trade. We attribute these price movements
to the search-brokerage nature of the upstairs market, where informa-
tion contained in the trade may be leaked to the market before the
actual consummation of the trade. Thus, the standard measure of the
permanent price impact, estimated using trade-day price movements,
probably provides a lower bound for information actually contained
in a block trade.

The analysis raises several new issues. It would be valuable to
extend the model to incorporate more complicated trading strategies
involving trades over a long horizon. For example, how does order
breakup affect price dynamics and information revelation over time? It
would also be interesting to compare the operation of the upstairs and
downstairs markets in terms of their ability to provide liquidity. This
would be especially relevant for stocks with low market capitalization.
Finally, do the results documented here apply more generally and to
other markets? These, however, are topics for future research.

Appendix

Proof of Proposition 1. Substituting Equation (5) into Equation (6) and
solving, we can express the equilibrium block price as a function of
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Q, given n, which we denote by

pb(Q;n) = Etb [ṽ|Q]+ αQ

n
, (A.1)

where α = ρσ 2[ṽ|Q]. The size of the trade becomes public at time t1,
so that the posttrade price in the downstairs market p1 (which equals
the expected value of the security given the size of the trade) is equal
to the conditional expectation of the representative counterparty who
observes the trade size, that is, p1 = Et1 [ṽ ] = Etb [ṽ|Q]. Using Equation
(A.1) and Equation (2), the temporary effect can be expressed as

τ = pb − p1 = αQ

n
. (A.2)

The number of counterparties is selected by the block trader. A com-
petitive block trader arranges the trade to maximize the trading rev-
enue (or minimize the cost) for a block sale (buy). For a purchase,
the block trader chooses the search intensity n to solve

min
n
{Qpb(Q;n)+ φ(n)}. (A.3)

For a sell, the corresponding problem is to maximize net revenues
given by −Qpb(Q;n) − φ(n). Equating expected marginal revenues
and costs (and ignoring integer constraints23), the optimal number of
traders identified through the search process solves

αQ2

n2
= γ δnγ−1. (A.4)

Solving, we obtain the optimal number of contacts as a function of
trade size,

n(Q) =
(
α

γ δ

) 1
γ+1

|Q| 2
γ+1 . (A.5)

Substituting Equation (A.5) into Equation (A.2) yields Equation (12),
where

K1 = α
γ

γ+1 (γ δ)
1

γ+1 . (A.6)

Note that when γ > 1, τ(Q) is an increasing (decreasing) and concave
(convex) function of trade size for buys (sells.) When γ = 1, the
temporary impact is a constant independent of size.

23 Treating n as a continuous variable simplifies the exposition considerably, and may be more in
keeping with reality where several counterparties are contacted (although very few may respond)
by the block trader.
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Proof of Proposition 2. Fix order size, Q, and consider Equation (A.6).
As K1 is increasing in δ and α, it follows that the temporary impact
is increasing with the cost of search, degree of risk aversion, and the
conditional variance of the asset’s liquidation value.

Proof of Proposition 3. Denote by C (Q) the total commission costs
as a function of order size. As n is a function of trade size, |Q|, the
commission costs are also a function of size and

C (Q) = φ(n(Q)) = K2|Q|b, (A.7)

where K2 = δ
1

γ+1 (α/γ )
γ

γ+1 and b = 2γ
γ+1 . For a given order size, K2 is

increasing in α and δ, that is, commissions increase with cost of search,
degree of risk aversion, and the conditional variance of the asset’s
liquidation value. Per share commissions are given by C (Q)/|Q| =
K2|Q|b−1.

Proof of Proposition 4. Consider a buy order; the price response for
sell orders is determined in a corresponding manner. Recall that τ(Q) =
K1 sign(Q)|Q|a and C (Q) = K2|Q|b , where K1 and K2 are positive con-
stants, a = γ−1

γ+1 and b = a+ 1 = 2γ
γ+1 . Using these relations, Equation

(11) can be expressed in the form

π(Q) = A[b(K1 + K2)Q
a + π(Q)+ Qπ ′(Q)+ BQ], (A.8)

where A = w/w0 and B = ρσ 2
0 . Observe that A < 1. Intuitively, s is a

noisy signal of y, which in turn is a noisy signal of v, so the variance
of s is greater than the variance of y. Accordingly, the initiator places
more weight on the direct signal than the counterparty places on the
indirect signal conveyed by order size. The following price functional
is a solution to Equation (A.8):

π(Q) = λ1Q + λ2Qa, (A.9)

where (when γ > 1) λ1 = AB
1−2A and λ2 = Ab(K1+K2)

1−Ab .24 Note that the
initial condition π(0) = 0 is also satisfied by Equation (A.9).

For λ1 to be positive, the constant A must be less than 1
2 . If this con-

dition holds, then λ2 is also positive (since b < 2 and, thus, Ab < 1),
and the second order condition of the block initiator’s problem [Equa-
tion (7)] is satisfied. Recall that A = w

w0
, the ratio of the weight placed

by the public on the information signal conveyed by the initiator’s
order to the weight placed by the initiator on the private signal. Us-

24 When γ = 1, τ is a constant and both π(Q) and C (Q) are linear functions.
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ing the definitions of these weights, we obtain A = σ 2
v+σ 2

y

σ 2
v+σ 2

s
. Recall that

σ 2
s = σ 2

y +ζ 2σ 2
x , where ζ = −ρσ 2

0 /w0. Now, from DeGroot (1970), the
conditional variance of the initiator is given by σ 2

0 = σ 2
v σ

2
y /(σ

2
v + σ 2

y ).
Using this expression and the definitions of ζ and w0, the restriction
A < 1

2 reduces to

1+ r

σ 2
y

< ρ2σ 2
x , (A.10)

where r = σ 2
v /σ

2
y is a measure of information asymmetry given by

the ratio of the variance of public information to the variance of pri-
vate information. Thus, existence requires that portfolio hedging mo-
tivation for trade (measured by ρ2σ 2

x ) be sufficiently large relative to
the degree of information asymmetry. This is a familiar requirement
in trading models [see, for example, Glosten (1989) and Madhavan
(1992)]. The analysis for a sell is symmetric. In the general case, the
permanent impact is π(Q) = λ1Q + λ2 sign(Q)|Q|a. The price func-
tional is a concave (convex) function of order size for buys (sells).
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