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The Online Appendix has two sections. The �rst section contains supplemental results for

Section 3. The second section contains two extensions to the baseline model: continuum of

actions and veri�able information.

A Supplemental results for Section 3

Proposition 7 A non-in�uential equilibrium always exists. In any non-in�uential equilibrium

there are b��NI and �
��
NI 2 (0; 1) such that following hold: the agent chooses action L if and only

if � � b��NI . If the agent chooses action L then the principal intervenes if and only if � > cP ,
and upon failed intervention the agent revises his initial decision with probability one. If the

agent chooses action R then the principal intervenes if and only if � < � cP
1�(1��)���NI

, and upon

failed intervention the agent revises his initial decision with probability 1 � ���NI ; where ���NI
solves ���NI = � (�

��
NI ; b

��
NI) and � is given by (19).

Proof. Let �aA be the probability that aF = R if aA 2 fL;Rg and intervention fails. Suppose
aA = L. The principal gets �� + (1� �)�L� � cP if she intervenes, and zero otherwise.

Therefore, e = 1 , � > cP
�+(1��)�L

. Since E
h
� + �j� > cP

�+(1��)�L

i
> 0 for all � > 0 and

�L 2 [0; 1], then in any equilibrium it must be �L = 1. The agent�s expected utility from

aA = L is

Pr [� > cP ] (E [� + �j� > cP ]� �cA) : (39)

Suppose aA = R. The principal gets (1� �)�R��cP if she intervenes, and � otherwise. There-
fore, e = 1, � < � cP

1�(1��)�R
. If e = 1 and � = 0; then aF = R, E

h
� + �j� < � cP

1�(1��)�R

i
�
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0. The agent�s expected utility from aA = R is

Pr

�
� � � cP

1� (1� �)�R

�
E
�
� + �j� � � cP

1� (1� �)�R

�
(40)

+Pr

�
� < � cP

1� (1� �)�R

��
��cA + (1� �)max

�
0;E

�
� + �j� < � cP

1� (1� �)�R

���
:

Comparing (40) and (39), the agent chooses aA = L if and only if

� � min
�
�E

�
�j� < � cP

1� (1� �)�R

�
; �0 (�R)

�
(41)

or

�E
�
�j� < � cP

1� (1� �)�R

�
< � � �0 (�R) ; (42)

where

�0 (�R) = �cA
Pr
h
� � � cP

1�(1��)�R

i
� Pr [� > cP ]

Pr
h
� cP
1�(1��)�R

< � < cP

i � E
�
�j � cP

1� (1� �)�R
< � < cP

�

�0 (�R) = �cA
Pr
h
� � � cP

1�(1��)�R

i
� Pr [� > cP ]

Pr [� < cP ]� �Pr
h
� � � cP

1�(1��)�R

i
+
�Pr

h
� � � cP

1�(1��)�R

i
E
h
�j� < � cP

1�(1��)�R

i
� Pr [� < cP ]E [�j� < cP ]

Pr [� < cP ]� �Pr
h
� � � cP

1�(1��)�R

i :

Consider the following condition,

�cA
Pr
h
� � � cP

1�(1��)�R

i
� Pr [� > cP ]

Pr [� < cP ]
> E [�j� < cP ]� E

�
�j� < � cP

1� (1� �)�R

�
: (43)

It can be veri�ed that if (43) holds then

�E
�
�j� < � cP

1� (1� �)�R

�
< �0 (�R) < �

0 (�R) ; (44)
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and otherwise,

�0 (�R) < �
0 (�R) < �E

�
�j� < � cP

1� (1� �)�R

�
: (45)

De�ne

l0 (x) � Pr

�
� � � cP

1� (1� �)x

�
� Pr [� > cP ]

h0 (x) � Pr [� < cP ]

�

E [�j� < cP ]� E
h
�j� < � cP

1�(1��)x

i
l0 (x)

:

Condition (43) holds if and only if

l0 (�R) > 0 and cA > h
0 (�R) :

Note that l0 (x) decreases in x and h0 (x) increases in x, and hence, (43) holds if and only if

�R < � � min
�
l0�1 (0) ; h0�1 (cA)

	
:

Note that � can be greater than one or smaller than zero. Based on (41) and (42):

� If �R � �; then (43) holds and the agent chooses aA = L if and only if � � �0 (�R). Note
that �E

h
�j� < � cP

1�(1��)�R

i
� �0 (�R) implies �R = 1. Therefore, it has to be � � 1.

� If �R > �; then (43) is violated and the agent chooses aA = L if and only if � �
�0 (�R). Since �

0 (�R) < �E
h
�j� < � cP

1�(1��)�R

i
, �R must also solve �R = � (�R; � (�R)).

Therefore, it has to be � < 1. Suppose � < 1. Then, �0 (1) < �E
�
�j� < � cP

�

�
, and

hence, � (1; �0 (1)) < 1. If �R = � � 0 then � (�) = �E
h
�j� < � cP

1�(1��)�

i
, and hence,

� (�; �0 (�)) = 1. If �R = 0 > � then �
0 (0) < �E [�j� < �cP ], and hence, � (0; �0 (0)) > 0.

Either way, if � < 1 then �R = � (�R; �
0 (�R)) has a solution in [max f0; �g ; 1] :

We conclude, there are two cases:

1. If � � 1; then the agent chooses aA = L if and only if � � �0 (1), where ���NI = 1. Note
that b��NI � �0 (1) > 0.
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2. If � < 1; then the agent chooses aA = L if and only if � � �0 (���NI), where 1 > �
��
NI >

max f0; �g and ���NI solves ���NI = � (���NI ; �0 (���NI)). Note that b��NI = �0 (���NI).

Since f is symmetric and E [�] � 0, Pr
h
� � � cP

1�(1��)�R

i
�Pr [� > cP ] � 0 for all �R 2 [0; 1].

Therefore, � = �1, (43) is violated and only the second case applies, that is, b��NI = �0 (���NI).
Note that �0 (���NI) can be positive or negative. Moreover, since � = �1, ���NI < 1.

Lemma 4 If the equilibrium is in�uential according to De�nition 3, then it is also in�uential

according to De�nition 1.

Proof. Suppose on the contrary there is an equilibrium that is in�uential according to De-

�nition 3 but it is not in�uential according to De�nition 1. Therefore, for any m1;m2 2 M
and � 2

�
0; �

�
, aA (m1; �) = aA (m2; �). Moreover, there are m1;m2 2 M and �0 such that

aF (m1; �0) 6= aF (m2; �0). Similar to the arguments in the proof of Proposition 7, �L = 1.

Since aA (m;�) is invariant to m but aF (m1; �0) 6= aF (m2; �0), it has to be aA (�;m) = R for

all � 2
�
0; �

�
and m 2M . Suppose that, without the loss of generality

Pr [aF = RjaA = R; e = 1; � = 0;m1] < Pr [aF = RjaA = R; e = 1; � = 0;m2] :

Note that if aA = R and e = 1 then � < 0. Therefore, the principal strictly prefers m1 over

m2, a contradiction to m2 2M .

Lemma 5 Suppose � = 0 and cP < ��G(��)�G(�E[�j�<0])1�G(�E[�j�<0]) . An in�uential equilibrium in which

intervention is o¤ the equilibrium path does not survive the Grossman and Perry (1986) cri-

terion. Moreover, an in�uential equilibrium that survives the Grossman and Perry (1986)

criterion always exists, and it satis�es Proposition 5 part (ii.b).

Proof. Consider an equilibrium in which intervention is o¤ the equilibrium path. In this

equilibrium, the agent always follows the recommendation to choose action R. The agent

follows the recommendation to choose action L if and only if � � �E [�j� < 0]. Suppose � < 0
and the principal recommends the agent to choose action L but the agent decides on R. Let

�̂R =
1�G

�
�E

h
�j� < � cP

1��̂R

i�
1�G (�E [�j� < 0]) ; (46)
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and note that since cP < ��G(��)�G(�E[�j�<0])1�G(�E[�j�<0]) then a solution such that � < � cP
1��̂R

always exists.

Consider the following deviation: the principal intervenes if and only if � < � cP
1��̂R

. If the agent

expects that upon deviation the principal intervenes if and only if � < � cP
1��̂R

, the agent has

incentives to revise the decision from R to L if and only if � � �E
h
�j� < � cP

1��̂R

i
. Given

this behavior, the principal has incentives to deviate and intervene if and only if � < � cP
1��̂R

.

Indeed, since �̂R solves (46), if the principal deviates and intervenes, she expects the agent to

revise his decision with probability 1� �̂R. Therefore, the bene�t from intervention is �̂R��cA.
If the principal does not intervene, then her payo¤ is �. Therefore, the principal intervenes

if and only if � < � cP
1��̂R

. The existence of this deviation violates the Grossman and Perry

(1986) criterion.

Next, note that any equilibrium that is described by Proposition 5, both e = 1 and e = 0

are on the equilibrium path, and hence, the Grossman and Perry (1986) criterion is trivially

satis�ed. Based on the proof of Proposition 5, if � = 0 then cA < h (�R) for any �R 2 [0; 1).
Clearly, if ���R = 1 then the � = 0 implies that the principal never intervenes. Therefore, if

there is an in�uential equilibrium in which e = 1 is on the equilibrium path, then b�� and

���R < 1 must satisfy part (ii.b). Since cP < ��
G(��)�G(�E[�j�<0])
1�G(�E[�j�<0]) then

�R =
1�G

�
�E

h
�j� < � cP

1��R

i�
1�G

�
�E

h
�j � cP

1��R
< � < 0

i� (47)

has a solution where � < � cP
1��R

, ���R is given by this solution and b�� is given by (20). By

construction, an in�uential equilibrium as in Proposition 5 part (ii.b) indeed exists.

Proposition 8 All the equilibria in Proposition 5 continue to exist when the agent is allowed

to revise his initial decision when e = 0.

Proof. Consider an equilibrium as described by Proposition 5. Suppose m 2 MR. In any

equilibrium described by Proposition 5, aA = R for sure. Since m 2 MR ) � > 0, based on

(3), the agent has incentives to maintain his original decision even if the principal does not

intervene, and as in Proposition 5, e = 0 for sure. Suppose m 2 ML. Based on Proposition

5, aA = R , � > b��, and e = 1 if and only if aA = R and � < � cP
1�(1��)���R

. If aA = L then
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e = 0 for sure. The agent does not infer new information from e = 0 and his expected payo¤ is

therefore zero. If aA = R and e = 0 then the agent infers � cP
1�(1��)���R

< � < 0, and he revises

his decision to L if and only if

� � �E
�
�j � cP

1� (1� �)���R
< � < 0

�
: (48)

Suppose � > b��. From the proof of Proposition 5, it can be veri�ed that the right hand side

of (48) is strictly smaller than b��. Therefore, � > b�� implies that (48) never holds. That is,

the agent has no incentives to revise his decision to L if e = 0. The agents�s expected payo¤

from choosing R is given by (32). By construction, � > b�� implies that (32) is non-negative

and the agent is better o¤ choosing action R as prescribed by Proposition 5.

Suppose � � b��. If (48) is violated then the agent has no incentives to revise his decision
to L if e = 0, and his expected payo¤ from choosing R is given by (32). By construction,

� < b�� implies that (32) is negative. Therefore, the agent is better o¤ choosing action L as

prescribed by Proposition 5. If (48) holds then the agent revises his decision to L if e = 0.

Note that (48) implies E
h
� + �j� < � cP

1�(1��)���R

i
� 0. Therefore, if e = 1 and � = 0 then

the agent always revises his decision to L. The agent�s expected payo¤ from choosing R is

��cA Pr
h
� < � cP

1�(1��)���R
j� < 0

i
< 0. Therefore, the agent is better o¤ choosing action L as

prescribed by Proposition 5.

To conclude, the agent�s initial decision as prescribed by Proposition 5 does not change if he

has option to revise it when e = 0. Therefore, the principal�s communication and intervention

strategies, as prescribed Proposition 5, are also incentive compatible, and all the equilibria in

Proposition 5 continue to exist as required.

Proposition 9 With voluntary revision, intervention harms communication if and only if

cA <
1

�

�
E [�j� < 0]� E

�
�j� < � cP

1� (1� �)���R (cA; cP )

��
; (49)

where ���R (cA; cP ) is given by Proposition 5 part (ii.b).

6



Proof. Based on the proof of Proposition 5, if cA � h (1) ; then b�� = � (1; cA) > 0. Note

that � (1; h (1)) = �E
�
�j� < � cP

�

�
. Since cA > h (1) ) � (1; cA) > � (1; h (1)), and since

�E
�
�j� < � cP

�

�
> �E [�j� < 0], cA � h (1) implies � (1; cA) > �E [�j� < 0], and intervention

enhances communication. If cA < h (1) ; then b�� = � (���R (cA) ; cA) and

� (���R (cA) ; cA) > �E [�j� < 0], cA >
E [�j� < 0]� E

h
�j� < � cP

1�(1��)�R

i
�

;

and note that

E [�j� < 0]� E
h
�j� < � cP

1�(1��)�R

i
�

<
Pr [� < 0]

Pr
�
� < � cP

�

�E [�j� < 0]� E ��j� < � cP
�

�
�

= h (1) :

Combined, intervention enhances communication if and only if (49) holds.

B Extensions

B.1 Continuum of actions

Consider a variant of the baseline model in which the action space is a continuum. Speci�cally,

suppose a 2 R and let
v (�; a) = � (� � a)2 : (50)

For simplicity, I assume that the agent�s bias � is a common knowledge and strictly positive.

I make the following assumptions about intervention. First, intervention is always successful,

that is, � = 1. Second, if the agent chooses aA and the principal intervenes and chooses aP ,

the principal incurs an additional cost of cP (aP � aA)2 and the agent incurs an additional cost
of cA (aP � aA)2, where cP � 0 and cA � 0. These functional forms capture the idea that as
jaP � aAj increases, both the principal and the agent incur larger costs due to intervention.
As in the baseline model, I denote by aA (m) the agent�s action strategy and by � (�) the

principal�s messaging strategy. I also denote by �(aA; �) the di¤erence between aP and aA

when principal intervenes, as a function of aA and �.
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Proposition 10 Let � (�; cP ; cA) be the set of equilibria of the game. In any equilibrium,

�� (aA; �) =
��aA
1+cP

. Moreover,

(a�A (m) ; �
� (�) ;�� (aA; �)) 2 � (�; cP ; cA)

if and only if

(a�A (m) ; �
� (�) ;�� (aA; �)) 2 �

�
� � cP + c

2
P

cA + c2P
;1; cA

�
:

Proof. Given the agent�s decision aA and the observation of �, regardless of the message that

the principal sent the agent, the principal solves

�(aA; �) 2 argmax
�

�
� (� � (aA +�))2 � cP�2

	
) �(aA; �) =

� � aA
1 + cP

:

Thus, if the agent chooses action aA, the principal�s utility conditional on � is

uP = � (� � (aA +�(aA; �)))2 � cP�(aA; �)2

= � cP
1 + cP

(� � aA)2 :

The agent expects the principal to follow intervention policy �(aA; �), and therefore, given

message m, he solves

a�A 2 argmax
aA

E
�
� (� + � � (aA +�(aA; �)))2 � cA�(aA; �)2 jm

�
) a�A = E [�jm] + �

cP + c
2
P

cA + c2P
:

It follows, at the communication stage, the principal behaves as if her preferences are rep-

resented by the utility function � (� � aA)2, and the agent behaves as if cP = 1 and his

preferences are represented by the utility function �
�
� + �

cP+c
2
P

cA+c
2
P
� aA

�2
.

Proposition 10 implies that the quality of communication between the principal and the

agent in equilibrium is equivalent to the quality of communication when intervention is not
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possible and the agent�s bias is � cP+c
2
P

cA+c
2
P
instead of �. Note that Crawford and Sobel�s (1982)

setup with a quadratic loss function is a special case of this model when cP = 1. Therefore,
intervention harms communication if and only if

cP + c
2
P

cA + c2P
> 1, cP > cA:

B.2 Veri�able information

Consider a variant of the baseline model in which � is veri�able. I argue that intervention

can harm the principal�s ability to a¤ect the agent�s decision through disclosure in this setup

as well. When information is veri�able, � (�) 2 f�; �g ; where � = � is interpreted as the

principal�s decision not to disclose information, and � (�) = � is the principal�s decision to

disclose the exact value of �. To keep the analysis simple, I assume � = 1 and cA > 0:

Suppose the principal discloses �. If � � �cP ; then the principal intervenes if and only if
the agent chooses R. Since cA > 0, the agent will avoid intervention and choose L. If � > �cP ;
the principal intervenes if and only if the agent chooses L and � > cA. However, according to

(3), the agent will choose L if and only if � < ��. To conclude,

Pr [aA = Rj� (�) = �] =

8><>:0 if � � �cP

Pr [� � ��] if � > �cP ,
(51)

and note that if � (�) = �; then the principal never intervenes. The next result characterizes

the equilibria of the game with veri�able information.

Proposition 11 Let �� � f� : � (�) = �g and '� = Pr [aA = Rj� = �]. In any equilibrium the
principal intervenes with zero probability. Moreover:

(i) For any � �
�
0; �
�
there is an equilibrium in which �� = �, '� = 1 and aA = L if and

only if � < max f�cP ;��g.
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(ii) An equilibrium with '� = 0 exists if and only if � � bver; where

bver � max
�:[maxf�cP ;��g;0]���[�;0]

�
cA

Pr [� < �cP j� 2 �]
1� Pr [� < �cP j� 2 �]

� E [�j� � �cP ; � 2 �]
�
:

(52)

In this equilibrium,
�
max

�
�cP ;��

	
; 0
�
� �� � [�; 0] and aA = L if and only if � < 0.

(iii) No other equilibrium exists.

Proof. First, consider an equilibrium with '� = 1. If � < 0, the principal strictly prefers dis-

closing � and thereby reducing the probability thatR is chosen from one to Pr [aA = Rj� (�) = �] <
1 as given by (51). If � � 0 the principal is indi¤erent with respect to her disclosure policy,

since in both cases the agent chooses R with probability one. Moreover, the principal has no

incentives to intervene if � > 0 and aA = R. Therefore, for any � �
�
0; �
�
, if � = �; then the

agent infers that � > 0 for sure, and according to (3), he strictly prefers choosing R. Overall, in

this equilibrium, aA = L if and only if � < max f�cP ;��g, and the principal never intervenes.
Second, consider an equilibrium with '� 2 (0; 1). If � < max

�
�cP ;��

	
and � = �; then

the principal expects the agent to choose L with probability one. Since '� > 0, the principal

strictly prefers disclosing �, thereby saving the cost of intervention when the agent chooses R.

If � > 0 and � = � then the principal expects the agent to choose R with probability one. Since

'� < 1, the principal strictly prefers disclosing � in this range. Combined, it is necessary that

�� �
�
max

�
�cP ;��

	
; 0
�
. Since

�
max

�
�cP ;��

	
; 0
�
� [�cP ; 0] the agent knows that upon

non-disclosure � 2 [�cP ; 0], and hence, that the principal will not intervene. It follows, the
agent will choose R upon non-disclosure if and only if �� � E [�j� 2 ��]. Therefore, it must be
'� = Pr [�� � E [�j� 2 ��]]. Let �̂ 2 �� be such that �̂ < E [�j� 2 ��]. If � = �̂ then the agent
will choose R if and only if �� � �̂. Therefore, by disclosing �̂; the principal strictly increases
the probability that the agent chooses L from 1 � '� to Pr[�� > �̂]. Since �̂ 2 �� ) �̂ < 0,

the principal has strict incentives to deviate and disclose �̂. By this logic, if '� 2 (0; 1) ; then
�� 2 f?; f0gg. In both cases, aA = L if and only if � < max f�cP ;��g, which is a special
case of part (i).19

19If �� 2 f?; f0gg ; then Pr [� 2 ��] = 0, and hence, '� can take any value without changing the outcome
of the equilibrium.
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Last, consider an equilibrium with '� = 0. Since '� = 0, the principal has strict incentives

to disclose � when � > 0. Moreover, if � 2
�
max

�
�cP ;��

	
; 0
�
; the principal has strict

incentives to conceal �, since if she discloses �, there is a strictly positive probability that the

agent chooses a = R. If � 2
�
�;max

�
�cP ;��

	�
, the principal is indi¤erent between disclosing

and concealing �, as in both cases the agent chooses L for sure. Therefore, it is necessary that�
max

�
�cP ;��

	
; 0
�
� �� � [�; 0]. If � = �; the agent infers � 2 ��. Since �� � [�; 0] ; the

agent expects that if he chooses L the principal never intervenes and his payo¤ will be zero.

Instead, if the agent chooses R, his expected utility is

Pr [� � �cP j� 2 ��]E [� + �j� � �cP ; � 2 ��]� cA Pr [� < �cP j� 2 ��] :

Therefore, if � = �; the agent chooses L if and only if

� � cA
Pr [� < �cP j� 2 ��]

1� Pr [� < �cP j� 2 ��]
� E [�j� � �cP ; � 2 ��] :

Note that '� = 0 requires � being smaller than the RHS of the above condition. Therefore,

an equilibrium with '� = 0 exists if and only if � � bver. If � � bver; then the agent e¤ectively
chooses aA = R if and only if � > 0, and the principal never intervenes. This argument proves

part (ii). Part (iii) and the claim that in any equilibrium the principal intervenes with a zero

probability, follow by noting that all cases where '� 2 [0; 1] have been covered by the proof.

When '� = 0; the principal can conceal enough information to convince the agent to choose

action L whenever � < 0. In this respect, the agent is following the principal�s demand, and

the principal�s �rst best is obtained in equilibrium. By contrast, when '� = 1 (and cP > 0),

the principal�s expected payo¤ is strictly less than her �rst best. In this respect, equilibria

with '� = 0 ('� = 1) are the analog of in�uential (non-in�uential) equilibria in the baseline

model. Proposition 11 shows that the existence of an equilibrium with '� = 0 depends on how

� compares with bver. The next result gives an example where an equilibrium with '� = 0

exists without intervention, but it does not exist with intervention. In this respect, intervention

harms the principal�s ability to in�uence the agent through communication, even with veri�able

information. The intuition behind the result is similar to the one in the baseline model, and
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this can be seen by the similarity between expression (52) and expression (8).

Proposition 12 Suppose cP 2 (0;��) and �E [�j � cP � � < 0] < � � �E [�j� < 0]. There
is �cA > 0 such that if cA 2 (0; �cA) ; then the principal�s �rst best is obtained in equilibrium
without intervention, but is not obtained in equilibrium with intervention.

Proof. I start by arguing that � � bver (cA = 0; cP ) if and only if � � �E [�j � cP � � < 0].
Consider three cases. First, suppose � � �E [�j � cP � � < 0]. Let � = [�cP ; 0] and note
that � � �E [�j � cP � � < 0] = �E [�j� � �cP ; � 2 �]. Since �E [�j� � �cP ; � 2 �] � bver,

we have � � bver (cA = 0; cP ) as required. Second, suppose � > �E [�j � cP � � < 0] and
� � cP . Then [maxf�cP ;��g; 0] � � implies [�cP ; 0] � �. Therefore, E [�j� � �cP ; � 2 �]
is invariant to � and is equal to E [�j � cP � � < 0]. Therefore, bver = �E [�j � cP � � < 0].
Since � > �E [�j � cP � � < 0], bver (cA = 0; cP ) < �, as required. Third, suppose cP >

� > �E [�j � cP � � < 0]. Relative to �0 = [�cP ; 0], any [��; 0] � � � [�; 0] such that

[�cP ; 0]n� 6= ? is missing from its pool � 2 [�cP ;��]. Since �� < E [�j � cP � � < 0],
E [�j � cP � � < 0] � E [�j� � �cP ; � 2 �]. This implies �� < E [�j� � �cP ; � 2 �] for all
[maxf�cP ;��g; 0] � � � [�; 0]. Therefore, bver (cA = 0; cP ) < � as required.
A special case of Proposition 11 is cP � ��, that is, intervention is not allowed. Based

on Proposition 11, without intervention, an equilibrium with '� = 0 exists if and only if

� � bver (cA;��). Note that bver (cA;��) = bver (0;��) for any cA. According to the argument
above, without intervention, an equilibrium with '� = 0 exists if and only if � � �E [�j� < 0].
Next, suppose cP 2 (0;��) and �E [�j � cP � � < 0] < � � �E [�j� < 0]. Note that for all cA
and cP we have bver (cA; cP ) � H (cA; cP ) where

H (cA; cP ) � cA
Pr
�
� < �cP j� 2 [�;�cP ] [ [maxf�cP ;��g; 0]

�
1� Pr

�
� < �cP j� 2 [�;�cP ] [ [maxf�cP ;��g; 0]

�
+ max
�:[maxf�cP ;��g;0]���[�;0]

f�E [�j� � �cP ; � 2 �]g

and H (cA; cP ) is continuous and increasing in cA. Moreover, limcA!0H (cA; cP ) = bver (0; cP ).

Therefore, for any " 2
�
0; � + E [�j � cP � � < 0]

�
there is �cA > 0 such that if cA 2 (0; �cA) then

bver (cA; cP ) � H (cA; cP ) < �E [�j � cP � � < 0] + "
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Therefore, if cA 2 (0; �cA) ; then bver (cA; cP ) < �, and according to Proposition 11, an equilib-
rium with '� = 0 exists without intervention, but not with intervention.
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