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Abstract

What are the quantitative implications of learning and informational asymmetries,
for generating fluctuations in aggregate and cross-sectional volatility over the business-
cycle? 1 propose a model that relies on informational channels, for the endogenous
amplification of the conditional volatility in macro aggregates and of cross-sectional dis-
persion during economic slowdowns, in a homoscedastic-shock environment. The model
quantitatively matches the fluctuations in the conditional volatility of macroeconomic
growth rates, while generating realistic real business-cycle moments. Consistently with
the data, shifts in the correlation structure between firms are an important source of
aggregate volatility. Up to 80% of the conditional aggregate volatility fluctuations are
attributed to fluctuations in cross-firm correlations. Correlations rise in downturns due
to a higher weight that firms place on public information, which causes their beliefs, and
policies, to comove more strongly. In the data, correlations rise at recessions in spite
of a contemporaneous increase in cross-sectional volatility, as the average between-firm
covariance spikes more than dispersion does.
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1 Introduction

What are the quantitative implications for aggregate and cross sectional volatility
fluctuations, that are induced by Bayesian learning and informational asymmetry?
This study provides a micro-founded model that endogenously generates time-varying
volatility for aggregate growth rates, via imperfect information channels, while gener-
ating realistic unconditional real business-cycle moments. Macroeconomic volatility
in this paper is built in a bottom-up approach. The model suggests that endogenous
oscillations in the correlation between firms’ policies are an important source for ag-
gregate volatility fluctuations. In recessionary periods, correlations rise as a result
of stronger reliance on public information. Higher between-firm correlation is trans-
lated into higher aggregate volatility. Both learning and asymmetric information are
crucial to generate economically significant fluctuations in aggregate volatility. Em-
pirically, correlations do rise at bad times, in spite of an increase in cross-sectional
variation of real variables (dispersion), since the average between-firm covariance rises

in recessions more than dispersion does.

The importance of this study lies in the growing body of literature in macroeco-
nomics and finance, which stresses the pivotal role of higher volatility in hindering
economic recovery, growth, and asset-prices. Specifically, consider the following styl-
ized facts regarding the time-varying behavior of volatility, and its implications:

Fact (I): Aggregate and cross-sectional volatilities are stochastic:

a. The conditional volatility of real aggregate macroeconomic variables,
such as output and investment growth, rises in economic downturns.
Quarterly GDP growth has about 35% more conditional volatility in
NBER recessions (Bloom (2013)); Consumption growth’s volatility
increases by 30% in bad times (This paper).

b. The cross-sectional dispersion of real quantities produced by firms is
countercyclical. Firms’ output growth, and employment growth, are
negatively correlated with detrended GDP (see e.g. Bachmann and
Bayer (2013)).

c. The average correlation between firm-level real-variables (e.g. output,
investment), increases in economic slowdowns (This paper). This fact
complements the more established notion that the average correlation
amongst stock-returns significantly increases in recessions (see e.g.
Moskowitz (2003), Krishnan, Petkova, and Ritchken (2009)).



Fact (II): An increase in the volatility of macroeconomic fundamentals has an ad-
verse effect on the real and financial economy; in particular -

a. Volatility reduces investment and economic activity due to a real-
option effect (see e.g. Dixit and Pindyck (1994); Bloom (2009)), or
due to a rise in the cost of capital (see e.g. Christiano, Motto, and
Rostagno (2010); Arellano, Bai, and Kehoe (2010); and Gilchrist,
Sim, and Zakrajsek (2014)).

b. Volatility lowers asset valuations, raises risk premia and increases
return volatility (see e.g. Bansal, Khatchatrian, and Yaron (2005);
Drechsler and Yaron (2011); Bansal, Kiku, Shaliastovich, and Yaron
(2014)).

The studies that examine the impacts of macro-volatility on the economy, that is,
explore fact (IT) above, treat the shocks to volatility, detailed in fact (I), as exogenous
and independent of other fundamentals. Differently put, the evolution of stochastic
volatility is traditionally modeled using an exogenous process. Yet, as illustrated
in this study, a perfect-information neo-classical growth model without exogenous
stochastic volatility, generates only a negligible increase in the conditional volatility
during downturns. This raises a gap, to uncover the economic forces that lead the
volatility of aggregate fundamentals to fluctuate and rise in recessions.

This study proposes a theory for the endogenous emergence of stochastic macro
volatility, in an environment of only homoscedastic first-moment shocks. It is thus
aimed at quantitatively explaining facts (I.a) - (I.c), while generating realistic business-
cycle unconditional moments. By doing so, the work helps to bridge the gap between
the econometric findings of fact (I), and the macroeconomic and financial literature
of fact (II). I demonstrate that learning is quantitatively important to understand
the dynamics of volatility and correlations over the business—cycleﬂ

The model presented in this paper relies on five main ingredients: (1) Existence
of a mass of atomistic firms; (2) The aggregate TFP shock is latent, but can be fully
recovered with a continuum of signals; (3) Firms use Bayesian learning to update
their belief about the current TFP level, and by doing so they rely on both public
and private information; (4) Higher economic activity at the firm level, helps the
firm to learn about the unobserved TFP, by endowing it with more signals; and (5)

Notably, more than one explanation is plausible for the observed behavior of volatility. The economic
forces described in this work should be viewed as a significant source of macro volatility fluctuations, among
possible others.



It takes a lag of one period to publish any macroeconomic quantity, including any
public information about the aggregate TFP.

In a nutshell, the economic narrative of the paper is as follows. Each period,
the firm receives two signals regarding the aggregate latent TFP shock. The first
is the firm’s own privately observed output, and the second is the lagged aggregate
TFP, which serves as a public signal. On one hand, firms produce using capital
and labor. The productivity of each hour of labor is subject to an unobserved,
homoscedastic, and idiosyncratic labor efficiency shock, that captures the effect of
time-varying tiredness, motivation, and focus on human capital. Consequentially,
every hired hour of labor provides an idiosyncratic signal, with fixed precision on
the aggregate state. Thus, firms that hire more labor, have a better ratio of signal
to noise. In bad times, firms choose to reduce their rented working-hours, due to
decreased profitability. Reducing the amount of labor drops the precision of the firm’s
private idiosyncratic signal (output) in recessionary periods. On the other hand, as all
firms are atomistic, a central-household that observes all firms’ outputs can become
perfectly informed about the underlying TFP by the end of the period. Publishing
this recovered aggregate TFP in a lag, is equivalent to a signal on today’s TFP with
fixed precision, as all shocks are homoscedastic. As a result, in bad times, firms
place more weight on public information, and less on their idiosyncratic information,
when constructing their beliefs on the current state of the economy. This generates a
greater comovement in the beliefs of firms in economic slowdowns, and hence, a larger
comovement in their investment and labor policies. The higher degree of correlation
amongst firms in bad times increases the volatility of aggregate quantities, such as

output and consumption.

When calibrated at quarterly frequency to match the unconditional moments of
consumption and output growth rates, the learning model amplifies the oscillations in
the conditional volatility of aggregate growth rates, while a no-learning model, similar
to the neo-classical firm problem, produces only minuscule changes in the conditional
volatility. In the learning environment, consumption growth’s volatility rises in bad
periods (when TEP growth is low) by 29% in the model versus 32% in the data, while
it falls in good times (when TFP growth is high) by 20% and 14% in the model and in
the data, respectively. For comparison, in the no-learning environment, the volatility
of aggregate consumption fluctuates by merely 3% in bad times. Similar results are
obtained for other macro growth rates. Capital’s growth volatility increases in bad
times by 57% and by 56%, in the model and in the data.



I further establish that the movements in the conditional volatility of aggregates,
capture shifts in the average conditional covariation between firms, as all firm-specific
volatility is effectively diversified away at the aggregate level. While this claim holds
exactly in the model in which firms are atomistic, I show that it roughly holds in the

data as well, in spite of the fact that empirically some firms are non-atomistic (see
e.g. Gabaix (2011)).

Since aggregate volatility amounts to the average covariation between firms, I can
then decompose aggregate volatility. The fluctuation in aggregate volatility between
bad and normal periods is equal to the fluctuation in firm-level volatility multiplied
by the fluctuation in the average between-firm correlation. In the no-learning model,
the small fluctuations in the conditional volatility of aggregates, are shown to be
driven by small changes in the conditional firm-level volatility, while the average
correlation between firms is approximately constant. By contrast, in the learning
model, the fluctuations in the conditional volatility of aggregates, are largely due
to shifts in the conditional correlation between firms, that rises in bad times. The
average correlation between firms’ outputs increases by 32% in bad times, and drops
by 29% in good times. For all aggregate growth variables, about 80% to 90% of
the increase in the conditional aggregate volatility in bad times is attributed to an
increase in the conditional correlations.

The endogenous fluctuations in the average correlation in the learning model stem
from two main model ingredients: (1) Bayesian leaning, with time varying gains, and
(2) Informational asymmetry. To show this, I shut down each of those channels
separately. Namely, I solve a modified learning model in which the labor noise shocks
are aggregate rather than idiosyncratic, thus eliminating informational asymmetries
between firms. In addition, I solve an alternative model in which the weights that
firms place on the public and private signals are fixed, and do not vary with the actual
gain (non-Bayesian learning). Both of the modified models lack the ability to produce
significant volatility fluctuations. Thus, a rise in (belief) uncertainty in bad times, as
some earlier works feature, is not sufficient to produce enough realized volatility at
the aggregate level.

Lastly, I show that the cross-sectional variation in the model, or dispersion, is
also countercyclical, as is also the case empirically. The correlation of output growth
dispersion with TFP is negative in the model and in the data. This is a result of a rise
not only in aggregate volatility, but also in firm-level volatility in bad times, in the
model. Ostensibly, an increase in dispersion seems to contradict a rise in the expected
correlation between firms. I reconcile the two by showing that if the average between-



firm covariation, increases in magnitude more than dispersion does in downturns, the
average correlation increases as well. In the data, the rise in the average covariation
in bad times ranges between 19% to 55%, while dispersion rises by less.

The rest of the paper is organized as follows. Section 2 offers a discussion of
related literature. In section 3, I provide the economic model. Section 4 presents the
data and the econometric methodology used to construct the conditional volatilities
and correlations. In Section 5, I report the model calibration and its implications for
unconditional business-cycle moments. Section 6 discusses the main results of this
paper: the implications of learning for the fluctuations in the aggregate conditional
volatility, both in the model and empirically, and its decomposition into firm-level
volatility and average correlation. The section also presents the implications of the
learning model for cross-sectional volatility, and establishes the robustness of the
results. Section 7 provides concluding remarks.

2 Related Literature

This study relates to several strands of literature. The closest studies that my work is
relates to, are theoretical macroeconomic models that aim at explaining why objects
like uncertainty, volatility and dispersion vary over time, both at the firm-level, and
at the macro level. A growing number of recent papers attempt to endogenize un-
certainty, mainly in centralized economies, over the business cycle (that is, why the
volatility of agents’ beliefs over the state of the economy increases in recessions). In
Van Nieuwerburgh and Veldkamp (2006), procyclical learning about productivity gen-
erates countercyclicality in firm-level uncertainty that may relate to countercyclical
movements in asset pricesﬂ Fajgelbaum, Schaal, and Taschereau-Dumouchel (2013)
also endogenize uncertainty level, and link it to economic activity via learning: higher
uncertainty about the fundamental discourages investment, which in turn results in
fewer signals about the fundamental, thus keeping uncertainty levels high, which
discourages investment further. Similarly, Orlik and Veldkamp (2013) show that a
Bayesian forecaster who revises model parameters in real-time, experiences counter-
cyclical uncertainty shocks, even if the underlying process is homoscedastic. This
occurs as the agent is more confident in predicting the future when growth is normal,
while sudden “unfamiliar” events in recessions make it harder for the forecaster to

*Related work to Van Nieuwerburgh and Veldkamp (2006) includes Ordofiez (2013). Ordonez (2013)
argues that the speed of boom and busts depends on the financial system of the country. In his work
however, beliefs are only public and the state of the economy is the volatility of productivity. Thus, volatility
is exogenously stochastic, while this work features homoscedastic volatility.



make predictions. A key difference between this paper and the former works, is that I
focus on wvolatility, or in other words, the time-varying predictable variation of realized
quantities, while the former discuss uncertainty levels, that is, the forecasting error
squared is time-varying. The former works do not predict that firms’ actual policies
are necessarily becoming more volatile, or that the correlation between firms’ policies
is fluctuating.

Other recent works endogenize firm-level volatility, or dispersion, in good versus
bad periods. Bachmann and Moscarini (2011) show that downturns offer the oppor-
tunity for firms to drastically alter their pricing policy, or to “experiment”, allow-
ing them to better learn their firm-specific demand function. This experimentation,
mainly performed to decide whether to exit the market, is the driver of cross-sectional
dispersion in the prices of firms. In Decker, DErasmo, and Boedo (2013), first mo-
ment TEFP shocks enable firms to expand to more markets and expose firms to an
increased number of market-specific shocks, which reduces firm-level volatility by di-
versification. Related, Tian (2015) also endogenizes productivity dispersion over the
business-cycle. These works focus on (micro) cross-sectional volatility. They do not
explicitly examine whether this micro volatility feeds into higher aggregate quantities.
In contrast, this work propagates the notion that an important source of aggregate
volatility is not merely an increase in individual firms’ idiosyncratic volatility, but

rather an increase in the correlation between individual firms’ policies.

Some related papers explicitly discuss aggregate volatility, which is the main focus
of this work. Ome contributor to aggregate volatility may come from Governments
and Central Banks. Pastor and Veronesi (2012) argue that policy becomes more
volatile during recessions because policy makers wish to experiment. In economic
downturns, politicians are drawn to experiment as they attempt to boost growth.
While this explanation directly feeds to macro volatility, it differs from the bottom-
up approach of the decentralized economy, taken in this paper. Gabaix (2011) shows
that idiosyncratic firm-level fluctuations can explain a significant portion of aggregate
shocks, when some firms are non-atomistic or “granular”. His study however, focuses
on unconditional aggregate volatility, not on its cyclical behavior. Kelly, Lustig, and
Van Nieuwerburgh (2013) endogenize firm level volatility (dispersion) using a different
framework than mine: consumer-supplier business networks, with some implications
for aggregate volatility. More related, Ilut, Kehrig, and Schneider (2013) show that
when hiring decisions respond more to bad signals, due to ambiguity about the level of
noise, both aggregate conditional volatility and dispersion of labor growth are coun-
tercyclical. A similar idea is used in the context of stock return correlations, in the



works of Ribeiro and Veronesi (2002), and Ozsoy (2013). As opposed to my quantita-
tive study, that embeds learning in a real business cycle environment, the work of Ilut
et al. (2013) is mostly qualitative. My work also employs a different learning mech-
anism. The papers of Thesmar and Thoenig (2004), Comin and Philippon (2006),
and Comin and Mulani (2006), also target aggregate volatility by trying to explain
the so-called “great moderation” in the volatility of aggregate returns and output
(see Stock and Watson (2003)). However, these works target the ostensible trend in
aggregate volatility, while they do not generate fluctuations of aggregate volatility
over the business cycle.

The second body of works related to this paper are studies discussing the social
value of public information, starting with the influential work of Morris and Shin
(2002). The work of Amador and Weill (2012), shows that increasing public informa-
tion slows down learning in the long run, and may reduce welfare. While aggregate
volatility fluctuates in their model, their stylized framework exhibits a hump shape
for volatility over time, that converges to zero in the long run, and does not explain
why volatility increases in recessionary periods.

Related, Angeletos and La’O (2013) show that even without aggregate TFP
shocks, sunspot public shocks that purely affect agents’ belief about the state of
the economy, without altering the underlying technology or preferences, termed “sen-
timents”, create aggregate fluctuations. While their framework highlights that public
information can serve as an important source of aggregate fluctuations, it produces
fixed volatility for aggregate output. A closer work of Angeletos, Iovino, and La’O
(2011) demonstrates, in a comparative static manner, that more precise public in-
formation reduces dispersion, but can increase the volatility of aggregate output. In
contrast, in my work the precisions of the signals is time-varying, allowing to ob-
tain stochastic volatility. In addition, my work is quantitative in nature, and targets
objects that are absent from the former works, such as investment rate and capital
growth. My work complements these works in that my focal point is different. I
harness the use of time-varying weights on public and private information to obtain
aggregate volatility that varies over the business cycle.

The third branch of studies my paper is related to, are econometric papers that
document that macro volatility, micro volatility (or cross-sectional volatility), and
also correlations, rise in recessions. Bloom (2013) documents that industrial produc-
tion growth, based on GARCH models, has about 35% more conditional volatility in
recessions. In the context of stock returns, Bloom (2013) and Bekaert, Hoerova, and
Lo Duca (2013), report that the VIX level is countercyclical, and increases by 58% in



recessions. Other meaures of macro uncertainty also increase in bad times. Jurado,
Ludvigson, and Ng (2013) use monthly economic series in a system of forecasting
equations and look at the implied forecasting errors. They find a sharp increase in
recessionary periods, and in particular, in the Great Recession. The works of Higson,
Holly, and Kattuman (2002), Dopke, Funke, Holly, and Weber (2005), Jorgensen,
Li, and Sadka (2012), Kehrig (2011), Bloom, Floetotto, Jaimovich, Saporta-Eksten,
and Terry (2012), and Bachmann and Bayer (2013), provide extensive evidence that
cross-sectional variance, or dispersion, is also highly countercyclical, for various eco-
nomic outcomes including output growth, sales growth, employment growth, earnings
growth, and Solow residuals. Investment-rate dispersion however, seems to be pro-
cyclical, as pointed by Bachmann and Bayer (2014). Moskowitz (2003), in the con-
text of stock returns, uses a multivariate-GARCH approach to show that conditional
correlations exhibit significant time variation, increase during recessions, and were
extremely large during the 1987 stock market crash. Similarly, Krishnan et al. (2009)
use average realized correlations of stock returns, and show that it significantly rises
in recessions. My work contributes to these findings by empirically showing that the
correlation of fundamentals, such as investment-rate and output growth, increases in
recessionary periods, and explains fluctuations in aggregate volatility of fundamentals.

The last strand of papers my work relates to are macroeconomics and asset-pricing
works that stress the importance of aggregate volatility in explaining business-cycle
fluctuations, economic growth and risk premia. Bloom (2009) shows that increased
volatility, measured via VIX, leads to an immediate drop in output and investment
growth rates as firms delay their investment decisions. The work of Fernandez-
Villaverde, Guerrén-Quintana, Rubio-Ramirez, and Uribe (2011) discusses uncer-
tainty in an open-economy context, showing that higher volatility lowers domestic
investment. Other works argue that higher volatility increases the cost of capital, or
credit spreads, hence makes investment more costly (see e.g. Christiano et al. (2010);
Arellano et al. (2010); and Gilchrist et al. (2014)). Basu and Bundick (2012) rely
on nominal rigidities to show that both consumption and investment can drop in
response to volatility shocks. Other works rely on alternative economic forces which
can yield a positive relationship between volatility and investment. These channels
include precautionary savings, time-to-build, or investment irreversibility (see e.g.
Abel and Eberly (1996); Bar-Ilan and Strange (1996); Gilchrist and Williams (2005);
Jones, Manuelli, Siu, and Stacchetti (2005); Malkhozov (2014); and Kung and Schmid
(2014)). Importantly, these papers treat volatility shocks as exogenous, while in this

paper [ treat volatility as an endogenous object.



3 Model

This section describes the theoretical framework that generates stochastic aggregate
volatility in a homoscedastic world. The economy is comprised of a mass of firms,
indexed by ¢ € [0,1], and one representative household, who owns all firms and
consume their dividends. Below I describe the problem faced by firms, the household,

and a definition of an equilibrium in this setup.

3.1 Aggregate Productivity

Aggregate productivity, denoted by Gy, evolves as geometric random walk with time

varying drift. Specifically, Gy11 = G} - g¢, where

gt = (1 = pg)go + pgGe—1 + 04ey 1,

and where ¢,, ~ N (0, 1)H Notice that the conditional volatility of aggregate produc-
tivity growth is constant. Further, note that g; is the gross-growth rate of productiv-
ity, and I assume that the mean growth rate gy > 1 is sufficiently large, in comparison
to the volatility of the shock o, such that g; is always positive.

It is assumed that aggregate productivity is a latent variable. This is also the case
in the real world: total factor productivity is unobserved, but can be recovered by
observing real aggregate macroeconomic growth rates. Both firms and the household
learn about the current and past levels of productivity from publicly and privately ob-
served signals. All information regarding the productivity shock is obtained from real
(noisy) economic outcomes. As explained later, all agents become perfectly informed
about any lagged level of aggregate productivity, but there is uncertainty regarding
the current period’s productivity growth g;.

3.2 Firms

Each firm is operated by a manager. The firm operates on an island. As a result,
all aggregate quantities, including aggregate productivity level, become observable to
the firm in a lag of one period. This assumption parallels to the real world, in the
sense that aggregate quantities are usually published in some lag. Specifically, at the
beginning of every period ¢, the manager of the firm gets an input from its owner (the

3Notice that Gy is predetermined.



household): last period’s aggregate productivity growth g, 1 ﬁ This assumption is
consistent with the availability of data in reality: the San-Fransisco Federal Reserve
Bank, for instance, publishes a TFP time-series, in a lag of one—quartelﬂ. In return,
the firm ships back to the owner its current period dividend after producing and

investing.

Firms produce output using capital and labor. Firm ¢ has a stock of capital k;,
and rented labor inputs (measured in time-units, or hours) ; ;.

Capital evolves according to:

lig

i = (1= ki + AG),

where 9 is the depreciation rate, and I;; is the investment level at period ¢. The capital

adjustment cost function A is specified as in Jermann (1998): A(é”) = (,ﬁ’—t)lfé +
1,t *Z 1,t

a. The parameter ( represents the elasticity of the investment rate with { — oo

representing infinitely costly adjustments. The parameters a; and as are set such
that there are no adjustment costs in the deterministic steady state.

Labor to be used in period t is rented in the period ¢t — 1 for a wage w; per unit of
time (hour). The wage exogenously grows at the same rate as aggregate productivity,
and is given by w; = w - Gy ﬂ Adjusting the labor force, requires a non-pecuniary
adjustment cost, and is given by ®p(lis, lis11) = Gi- 5 - (g1 — I;)%. These adjustment
costs capture, in a reduced form manner, the costs induced by the friction of search.
In the absence of consumption smoothing in a risk-neutral setting, this adjustment
cost is vital to make labor growth, and hence output and consumption growths,
sufficiently persistent.

Firms also face two idiosyncratic shocks. First, firms revenue is affected by an
observed demand shock z;,, that evolves according to an AR(1) process:

Zit = (]— - pz)ZO + Pz7t + 02E4 2,65

4 Alternatively, the firm’s input is the aggregate productivity level of period ¢ — 1. This is an equivalent
assumption, as the productivity level of time ¢ — 2 is already in the information set of the firm at time ¢t.
Dividing aggregate productivity level of time ¢ — 1 with that of time ¢t — 2 yields g:—1.

®The quarterly TFP data relies on Basu, Fernald, and Kimball (2006) and Fernald et al. (2012).

6As labor is hired in period t — 1, I specify a wage that incorporates only time ¢ — 1 information. The
reason that labor is pre-hired in my setting is that otherwise, one could potentially learn with certainty
the current level of productivity growth g, simply by observing the current labor wage. By making labor
predetermined, the current wage reflects merely g¢—1, which is already known to the firm at time ¢.

10



where the innovation is conditionally homoscedastic, and ¢; ., ~ N (0, 1). The second
idiosyncratic shock, €;;+, is a shock to the efficiency of labor. It is assumed to be a
latent i.i.d. shock across time and across firms, with &;;,; ~ N(0,1). This condition-
ally homoscedastic shock captures disturbances to the efficiency of the labor force,
that are unobserved to the firm, such as time-varying levels of focus, tiredness and

motivation that may affect a human resource.

The production technology of firm ¢ at time ¢ is therefore given by:
Yir = G%_azi,tkfft(gtli,t +o1gie) 7, (3.1)

where v € (0,1) is the the total returns to scale. This specification is similar to that
used in Van Nieuwerburgh and Veldkamp (2006), but augmented to support labor and
growth. It is a reduced-form production function that captures a very basic notion:
bigger firms who acquire more labor, and have a higher economic activity, have a
higher loading on the aggregate TFP growth g;, and enjoy a preferable signal to noise
ratio, as illustrated next. This assumption can be motivated explicitly by breaking
the total labor time stock [; ; into operating time-units (hours), each of which provides
another signal on the aggregate TFP shock. Below I outline briefly a microfounded
explanation for the emergence of such a production function.

Suppose that each firm operates by hiring its labor force to work for /;; hours. For
motivational purposes think of /;; as discrete. The productivity of the labor force,
per hours ¢ € [1..1;], varies. As mentioned earlier, this assumption captures the effect
of time-varying tiredness, or motivation. Specifically, in every hour ¢, the labor force
productivity, in labor efficiency units, is g; + oy, ¢+, where g, is the aggregate shock
of the labor augmenting technology, and 7;,, is an idiosyncratic efficiency shock,
independent over firms and hours, and distributed N(0,1). All n; ,, shocks are latent,
and so is g;.

By integrating over all hours, the firm’s total labor input, in efficiency units can
be written as: g.l;; + oy \/EEN,M where €;;; ~ N(0,1). To make sure that all shocks
are explicitly homoscedastic, I choose to solve a version of the model in which the
labor efficiency is simply g.l;; + 01€i 1., as specified in equation |Z|

It is assumed that neither the current aggregate productivity growth g¢;, nor the
additive idiosyncratic productivity shock to labor €;,; is observed by the firm. Firms
learn about the state of the economy, that is on g;, by receiving two types of signals.

"Solving a version of the model in which &;;, is pre-multiplied by o;1/l;; yields quantitatively very
similar results.
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The first signal, is the firm’s own privately observed idiosyncratic output. Rewriting
the firm’s output as a signal on ¢;, one obtains:

1

(%)
1 i g,
Sit = 7— <—y ! ) =0+ L Eilt- (3.2)

1—
li,t Gt aztkfjt liﬂg

Thus, the precision of the private signal is 52‘2,1;01_ 2 which is time varying and
increases with the amount of labor the firm rents. This assumption makes some
intuitive sense: bigger firms have better access to information due to more operating
branches, and access to different segments of the market. The firm’s output can be
written in terms of the observed signal: y;; = th_azmk:fft(Si,tli,t)”*o‘.

The second signal, which is analyzed next, is the publicly observed level of lagged
aggregate productivity growth g, ;. It is assumed that as the firm lives on an island,
the only information its manager observes is what is shipped by its owner. In other
words, each firm can observe aggregate productivity, sent from its owner to the island,

and all other aggregate quantities or prices without restriction, in a lag of one period.

With a mass of firms, the assumption that aggregate consumption growth, or
output growth are fully observed by the firm in a one-period lag, is equivalent to
assuming that g, ; is observed in a lag with certainty. The intuition is that at the
aggregate level, all idiosyncratic shocks are diversified, thus fully revealing aggregate
productivity growth. Aggregate consumption growth at time ¢, for instance, would
be a function of ¢; and the distribution of capital and labor. Assuming that the
distribution of capital becomes known to the manager in a lag, once the distribution
of resources is fixed, consumption is monotonically increasing with ¢;. Hence, one
can find a one-to-one mapping between aggregate consumption growth level, and g,
conditioning on the distribution of capital and labor. The conclusion is therefore that
observing aggregate real quantities in a lag does not provide any further information
on today’s g;, beyond observing g; _; directly, which is sent to the firm at the beginning
of period t¢.

By equation (3.1]), g;—1 can be perceived as a public signal on g; with fixed preci-
sion, where the mean of the signal is (1 — p,)go + pg:—1 and the precision is 052, by
the assumption of homoscedastic shocks. As firms cannot obtain any information on
the current level of ¢g; that is not contained in g;_1, this public signal determines the
common prior for all firms on g;, at the beginning of the period.

12



At the beginning of each period, the firm first produces using its capital and labor
stocks that are predetermined in the last period. Then, using the public signal ¢;_1,
and using its own private idiosyncratic signal (its output, or alternatively s;.), it
forms a posterior belief on what today’s level of g; is. Using this belief, the firm picks
its level of next period capital k;;41, that is, the firm chooses its investment level,
and also hires its next period labor force, l; ;1.

The private and the public signals the firm obtains can be collapsed into one pos-
terior belief, that weights the private and the public information with their respective
relative precisions. By Bayes rule, the weight the firm will put on the private signal

sit, and on the public signal, are given by:

Woprivate,i,t = 252 Wpublic,it = 11— Wprivate,i,t- (3-3)
i

In bad times, when aggregate TFP growth is smaller, /;; is on average smaller as

firms optimally choose to scale down, invest less, and hire less labor. Consequentially,

expression demonstrates that the firm puts more weight on the public informa-

tion in recessions, and less on its own idiosyncratic signal. Thus, posterior beliefs are

becoming more correlated among firms in recessions, triggering a higher correlation

between the policies of firms, and contributing to a higher aggregate volatility.

The manager is trying to maximize the firm’s value, given his own public and
private information. The information set of the manager at the beginning of the
period ¢, right after producing, is given by: k;;, the firm’s capital, [;;, the firm’s
labor, s;;, the productivity signal obtained from the firm’s private output, ¢;_;, the
public signal, and lagged level of aggregate productivity G;_;. Given this information

set, the manager solves the following maximization problem:
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where p; 4+ and V;,, are the posterior mean and variance (uncertainty) of the
belief on g;. ¢, the stochastic belief on g¢;, is defined as G = pigr + (g1 — figt) =
gt/ Vigt€ i, where e, ;¢ ~ N(0,1). When computing the continuation value, the
manager uses his belief g; to project the evolution of all variables that are contingent
on g, including future aggregate and private signals.

3.3 Household

There is one infinitely lived representative household in the economy, that holds
all firms, and exerts utility from a consumption stream of C}. It is assumed that
the household is risk neutral. The time discount rate of the household is 5. The
household derives income from dividend payments from its diversified portfolio of
corporate stocks.

After firms produce, and ship back their dividend to the household, the represen-
tative household gets to observe the output of all firms, comprising together a mass of
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signals {s;|i € [0, 1]} on ¢; with finite precisions. As a result, the household becomes
perfectly informed about aggregate productivity growth by the end of period ¢, and
consequentially, she sends the recovered g; to the managers at the beginning of period
t 4+ 1. In other words, fully learning the value of g; by the household occurs at the
end of the period. This assumption captures the notion that collecting the data from
a mass of individual firms, and analyzing it to extract productivity growth requires
some time and effort. This assumption also ensures that the household information
regarding the fundamentals, at the beginning of period ¢ when prices are set, is not
better than that of the managers who operate on the islands. The information set of
the household, at the beginning of period t is therefore any aggregate real quantity
shipped back from the firms, including aggregate output, capital, and labor growth
rates, and lagged aggregate productivity.

3.4 Equilibrium

An equilibrium is comprised of capital and labor policies for each firm i € [0,1], &}, ;
and [}, ;, and firm valuations V;;, such that:

1. Given the information set of the manager, the policies k;,, and [ ; solve the
firm problem in ((3.4)).

2. Markets clear: aggregate consumption satisfies, Cy = [, co.1) Vit — If,.

3. The valuation of a firm 7 is given by V;,.

4 Data and Volatility Measures

4.1 Data

I collect both annual and quarterly data on real macroeconomic aggregate growth
rates, from 1946 to 2013. Annual time-series are used for calibration purposes, while
the higher frequency quarterly time-series are used for the construction of aggregate
volatility measures. While some aggregate time-series span longer into pre-war era,
I use only postwar data to ensure that all aggregate time-series correspond to the
same time span, given the availability of the data. Consumption and output data
come from the Bureau of Economic Analysis (BEA) NIPA tables. Consumption
corresponds to the real per capita expenditures on non-durable goods and services and
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output is real per capita gross domestic product. Quarterly time-series are seasonally
adjusted. Data on capital and investment are taken from the Flow of Funds for
all private non-financial corporate businesses. Capital corresponds to total assets,
and investment corresponds to total capital expendituresf CPI data are taken from
the Federal Reserve Bank of St. Louis. The real per-capita growth rate of capital,
is computed by dividing capital by the mid-point population estimate from NIPA
tables, and subtracting inflation obtained from CPI data. Annual and quarterly
Data on Average Weekly Hours of Production per worker are taken from the Bureau
of Labor Statistics (BLS). Data on TFP growth are obtained from the San-Fransisco
Federal Reserve Bank. All aggregate growth time-series, including investment to
capital ratio, are in log form.

To obtain cross-sectional data, for the purposes of constructing cross-sectional
volatility and between-firm correlation measures, I use quarterly Compustat data.
To construct a cross-sectional menu of assets, I group Compustat firms into industry
portfolios. I choose to work with industry portfolios, instead of firm-specific data,
as this reduces the amount of noise and measurement error in each individual asset
time-series, and mitigates biases that may result from entry and exit of firms. Notice
further, that there are no shifts of individual firms between portfolios over time.
Industry portfolios are formed using the SIC code definitions as in Fama-French Data
Library, for 38 industry portfolios. I exclude financial and utility industry firms
from the sample, and hence, left with 31 industry portfolios. I use sales, capital
expenditures, and total assets as proxies for firms’ output, investment and capital.
Industry levels of output, investment, and capital are therefore defined as the sum
of the total sales, capex, and assets levels, for all firms within the industry at time
t. Industry sales, total assets, and capital expenditures time-series begin at 1966-Q1,
1975-Q1, and 1985-Q1, respectively. Prior to these starting dates, some portfolios,
or all, have missing observations. All industry time-series end at 2013-Q4. As data
are quarterly, they exhibits strong seasonality. I remove seasonality from industry
level time-series, by using X-12-ARIMA filter at the quarterly frequency. The real
growth rates of the seasonally adjusted time-series are then computed by subtracting
the quarterly inflation rate.

8Though there are other suitable variables to measure investment, the use of capital expenditures allows
better comparison to Compustat data in which capex is also available.
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4.2 Measurement of Aggregate and Cross-Sectional Conditional Volatil-
ities

To measure the conditional volatility of an aggregate time-series, in the data or in the
model, we first need to specify the information set of the econometrician at time t¢.
To ensure the construction of the conditional volatility in the data is identical to the
construction procedure within the model, I assume that the information available to
the econometrician is the same as the information set available to the household at
time t. Differently put, our household, who collects the data from individual firms,
and publishes aggregate quantities, is the econometrician.

Let AX; be the log growth of some aggregate time-series (AX; = log(X)fjl)). To
compute the conditional volatility V;(AX,,1), I follow two steps. First, I remove the
conditional mean of the time-series by projecting future AX;,; on a set of time ¢
predictors Z;:

AXH—I = bo + b;Zt + Ext+1, (41)

where €, 441 captures the conditionally demeaned, or innovation time-series of AXj.
Second, I project future squared innovations on their own lag, and the same set of
time ¢ predictors Z;:

gi,t—i-l =1+ V; [52,157 Zt] +error, (42)
and take the fitted value of the projection above as the ex-ante conditional volatility
of AX; 1, that is, V,(AXy1) = vy + v[e2,,  Z]. In the benchmark implementation
of the above procedure, both in the model and in the data, the set of the benchmark
predictors Z; includes real aggregate log output growth AY;, real aggregate log capi-
tal growth AK;, real aggregate log labor growth AL, real aggregate log investment
to capital ratio I /Ky, and the log lagged productivity growth rate. This information
set is equivalent to all aggregate variables that are observed by the household at the
beginning of period t. Although this information set is log-linear in the underlying
state variables, I find that it maximizes the Akaike Information Criterion of projec-
tion ([£.1)), and the results are robust to the inclusion of higher order powers of the
underlying aggregate state variables.

Similarly, let Az;; be the log growth of some single-firm (indexed by i € [1, ..., N])
time-series (or alternatively, some single-industry portfolio i time-series in the data),
where N is the number of individual assets in the sample. To measure the conditional

volatility of a one-firm ¢ time-series, I follow a similar procedure. At the firm stage, I
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remove the conditional mean of the one-firm time-series by projecting future one-firm
growth rates on their own lag and the set of predictors Z;:

Az = big+ b;,x Az, Zy]+€ip41 (4.3)

Next, the ex-ante conditional one-firm 7 volatility V,”"* /""" (z;,,1) is the fitted value

of the predictive projection:

5?’m7t+1 =v0+ l/z{’z [5?’%“ Z,] + error. (4.4)

Measuring the conditional covariation between two firms’ time-series, Az;; and
Az, (i,5 € [1,..,N]), involves a two-stage procedure, consistently with the condi-
tional volatility measurements. First, the conditional mean is removed from Az;; and
Ax;, by applying the projection twice: once for firm ¢, and once for firm 5. The
first stage provides two demeaned (innovation) time-series ¢; ., and ¢;,,;. Second, I
project the interaction of future firm ¢ and firm j shocks, €; ;++1€j4,¢41, On its own
lagged value, and the set of predictors Z;:

/

The ex-ante conditional covariation, is obtained from the fitted value of the above
projection: CO%(A{L‘LtJ’_l, ij,t—i—l) =cCy+ C; [5i,x,t€j,m,t7 Zt]

Lastly, the dispersion of a growth variable Az, at time t, is directly computed as
the cross-sectional variance of {Ax;;|i = 1..N}, that is: DISP,(Axy) = V,(Ax;y).
The residual (or ex-post) dispersion of a growth variable is defined as the cross-
sectional variance of the innovations {e;,:|: = 1..N} at time t, or: DISPi(e,:) =
Vn(&‘,x,t)-

5 Calibration and Unconditional Moments

5.1 Parameter Choice

Table [1| reports the parameters that I use for the benchmark calibration of the model,
under risk neutrality. The model is calibrated at a quarterly frequency. Some choices
of the production parameters are dictated by standard choices in macroeconomics. I
set the degree of returns to scale to n = 0.9 consistent with Basu and Fernald (1997)
and Gomes, Kogan, and Yogo (2009). The elasticity of capital input is o = 0.22,
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generating a capital share of output ¢ of approximately 25%, and a share of labor
of 75%. 1 select a depreciation rate of capital to be a conservatively standard value
of 6 = 2%, or an effective rate of 8.2% at an annual frequency, consistently with
the annual depreciation rate of capital in the data. This depreciation rate yields an
annual investement-to-capital ratio of about 10%, which is comparable with the data.

The key parameters that affect the learning ability are the standard deviations of
aggregate productivity and noise shocks. The standard deviation of aggregate pro-
ductivity shock determines the amount of prior uncertainty a manager has regarding
today’s level of productivity growth ¢,. I set the standard deviation of aggregate
productivity shock at a relatively high value for quarterly frequency, of o, = 0.02.
Calibrating this parameter at lower, more conservative value, reduces the ability of
the model to amplify conditional volatilities via learning, as the prior uncertainty
becomes too small to provoke a significant impact.

The standard deviation of aggregate productivity is given by /02 /(1 — p2), where
pg is the autocorrelation parameter of aggregate productivity. To ensure this standard
deviation is not too high (in the presence of high o), I then need to pick a relatively
small value for p,. I set p, = 0.5, which then implies a standard deviation of 2.3%
for aggregate productivity. While this standard deviation is still high, setting p, at
significantly lower values then implies uncrealistically low autocorrelations for real
growth rates in the model.

Since the autocorrelation parameter is now relatively low, while the standard de-
viation of aggregate productivity is large, I smooth consumption and output growth
using the adjustment costs parameters. I set the adjustment cost parameter of capital
to ¢ = 1.2, comparably with ¢ = 0.8 in Kung and Schmid (2014). The adjustment
cost of labor is set to k = 7. These adjustment costs facilitate targeting the stan-
dard deviation of output growth, and the autocorrelation of consumption and output
growth rates. Notably, the adjustment costs for labor are quite large. I introduce
this adjustment cost, to target the autocorrelation of consumption. It is crucial in
the absence of consumption smoothing in a risk neutral setup.

The standard deviation of the labor efficiency (noise) shock o, governs the pos-
terior uncertainty a manager has regarding today’s level of productivity growth g;.
Consequentially, this parameter governs the amplification of the conditional volatility
of real quantities in bad times. Naturally, a choice of noise close to zero yields no
amplification at all, as we are back in a perfect information case. I pick o; = 0.265,
to target the increase in consumption’s conditional volatility in bad times.
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I set the (gross) growth of aggregate productivity gy to 1.005, ensuring that annual
consumption growth is approximately 2%. In a risk neutral setup, the discount rate
parameter 5 must satisfy Sgy < 1, to ensure that the detrended value function is a
contraction. I therefore pick a value of § = 0.994. This implies an annual real risk
free rate of slightly above 2%.

As wages are exogenously specified, T set the (detrended) wage for labor as a
numéraire, with w = 1. Lastly, the idiosyncratic demand shock parameters o, = 0.01
and p, = 0.9 are set to approximately match the correlation between output and
investment-rate dispersions with the business cycle (that is, with TFP growth).

5.2 Model Numerical Solution and Implications for Unconditional Ag-
gregates

I solve the model using a second order perturbation method, as in Judd (1998)@.
To solve the model, I detrend the growing model variables by the lagged value of
the stochastic productivity trend. Details regarding detrending the firm problem,
are provided in the Appendix. I simulate the model at the quarterly frequency for
100,000 quarters, after truncation to remove dependence on initial values. I simulate
a cross section of 10,000 firms, to ensure that all idiosyncratic shocks are diversified
at the aggregate level. Aggregate model-implied level time-series, of capital, labor,
output, consumption and investment, are obtained by averaging the respective firm-

level quantities over all firms.

To facilitate the comparison between the benchmark model (with Bayesian learn-
ing) and the data, I also solve a version of the model without any learning. This
no-learning model specification is identical to the learning model. Namely, the pro-
duction function including the labor efficiency shock, the evolution of capital, and the
adjustment costs are the same, except for the fact that the firm knows every period
the true value of g; (zero prior and posterior uncertainty). The calibration used for
the no-learning model is identical to that used for the benchmark learning model, and
is specified in Table [1]

I report the model-implied unconditional moments of aggregate consumption, out-
put, labor, and capital log-growth rates and the log aggregate investment-to-capital
rate, versus their empirical counterparts in Table [2 The simulated quarterly model-

9Solving the model using third-order perturbation method yields similar results.
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implied time-series is time-aggregated to form annual observations, to be compared
with the annual data.

For the most part, the moments implied from the model with learning, are close
to or match their empirical estimates. The growth rates of aggregate consumption,
capital, and output are all roughly 2% in the model and in the data. Log investment-
rate is slightly higher in the model than in the data (-2.31 in the model versus -2.91
in the data). The model-implied volatilities align generally well with the data. The
volatility of output growth is about 3% in the model and in the data. The volatilities
of labor growth and investment-rate and close to their empirical counterparts. Con-
sumption growth has excess volatility in the model (3.1% and 1.4% in the model and
data, respectively). However, in the long same of 1930-2012, consumption growth’s
volatility is 2.2%, and the upper-bound of its volatility 90%-confidence interval of
2.6%, which is much closer to the model. Capital growth is less volatile in the model
than the data, due to the effect of adjustment costs, that compensate for the lack of

consumption smoothing.

The learning model implied autocorrelations of consumption, output and labor
growth fall into the data 90%-confidence intervals. Labor growth is much more per-
sistent in the model at the annual frequency, yet at the quarterly frequency this
problem vanishes. In the model, the quarterly auto-correlation of labor is 0.11, and
in the data the quarterly auto-correlation of labor growth is 0.23 with a confidence
interval of [0.048, 0.419]. Likewise, capital growth is overly persistent in the model.
However, the upper-bound of the 90%-confidence interval for quarterly capital growth
autocorrelation is 0.75, which is closer to the model quarterly autocorrelation of 0.94.
In all, the model is capable of producing reasonable unconditional aggregate moments,

in-light of the absense of risk-aversion.

While I do not target any moment implied by the no-learning model (this model
bears the same calibration as the learning model for comparative reasons), the no-
learning model produces similar moments to the learning model. The volatilities in the
no-learning model are slightly higher. This makes intuitive sense: in the no-learning
model, all firms share the same belief on the state of the economy, or aggregate TFP
growth. As “beliefs” in the no-learning model are perfectly correlated, this increases
the correlation between firms policies, in-comparison to the learning model in which
beliefs are heterogeneous. As a result of a higher unconditional correlation between
firms, aggregate volatilities are higher.
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6 Results

This section illustrates the implications of the learning model for aggregate and cross-
sectional volatilities, in a risk-neutral environment. In section [6.1 I show how the
learning model is capable of amplifying fluctuations in the conditional volatility of
aggregate growth rates, while the no-learning model, produces minute changes in
the conditional volatility, which is the main result of this study. Sections and
6.3] are dedicated to decompose the aggregate volatility movements into firm-level
volatility and cross-sectional correlation fluctuations. I demonstrate the importance
of the endogenous, time-varying correlation channel to produce endogenous shifts in
aggregate volatility. Next, section provides evidence that it is the combination
of Bayesian learning, along with asymmetric information, that is responsible for the
countercyclical correlation between the growth rates of firms, in-line with the model’s
economic narrative. Section explains how non-linearities in the measurement of
volatility, can produce small fluctuations in the measured conditional volatility under
a homoscedastic environment. This section illustrates that the no-learning model is
isomorphic to a constant conditional volatility world. Section demonstrates that
dispersion in the learning model is by large countercyclical, in spite of an increase in
the conditional correlations in bad times, and reconciles the two. Finally, section
deals with the robustness of the results.

6.1 Implications of Learning for Aggregate Conditional Volatility

The learning model is capable of generating fluctuations in the conditional volatility
of aggregates, that are much larger than those produced by a no-learning model, and
are also comparably close to the magnitude of fluctuations observed in the data. Table
demonstrates this claim. The table shows by how much the conditional volatility of
macroeconomic variables of interest, increases or decreases, in bad times compared to
normal periods. Likewise, the table shows the fluctuations in the conditional volatility
in good times compared to normal ones. Bad, normal and good times refer to periods
is which the aggregate TFP growth is between its 0-25th, 25-75-th, and 75-100th
percentiles, respectively. The table presents the volatility fluctuations induced by
quarterly data from the learning benchmark model, as well as from a no-learning
model, and empirical estimates of the fluctuations in the data.

In the data, the conditional volatility of real macroeconomic variables is clearly
counter-cyclical. For all variables, including output and consumption growth, the
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volatility is higher (lower) in bad (good) times, in comparison to normal times. For all
variables, except for the investment rate, the rise (drop) in the conditional volatility
in bad (good) times is significantly above (below) zero, as can be seen from the
confidence intervals. The magnitude of the positive (and significant) fluctuations
in volatility in bad times ranges from an increase of 30% to 56%. Specifically, the
estimated increase in output’s (GDP) conditional volatility in bad times is about
30%. This figure aligns well with Bloom (2013), who finds that quarterly GDP and
industrial production growth, has about 35% more conditional volatility in NBER

recessions.

In the learning model, almost all of the oscillations in the conditional volatility in
good and bad times for the variables of interest, fall into the empirical 90% confidence
intervals. For some variables the fluctuations induced by the model are very close to
the data point-estimates. For example, capital’s growth volatility rises in bad times
by 57% and 56% in the model and in the data, while it drops in good times by 41%
and 47% in the model and the data. Consumption growth’s volatility increases in
bad times by 29% in the model versus 32% in the data, and it falls in good times by
20% and 14% in the model and the data, respectively. For the investment rate, the
model tends to overstate the fluctuations in volatility, compared to the data. In the
learning model, the magnitude of the positive fluctuations in volatility in bad times
ranges from an increase of 29% to 58% [

By contrast, the no-learning model-implied volatility oscillations are muted, not
only in comparison to the learning model, but also in comparison to the data. The
positive fluctuations in volatility during bad times range from an increase of 1.8% to
4.3%, outside the data confidence intervals. Similarly, the fluctuations in good times

are mixed in sign, and range from -1.5% to 0.76%.

Two questions arise. First, and most importantly, what triggers the large volatility
fluctuations in the learning model? This questions is addressed in the following
sections - [6.4  Second, why are the volatility fluctuations in the no-learning
model very small, and yet, non-zero? I provide an answer in section [6.5]

0The learning model is also capable of generating fluctuations in the conditional volatility of aggregate
labor growth. For example, the conditional volatility of aggregate labor growth rises by 63% in the model,
and by 75% in the data.
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6.2 Implications of Learning for Average Between-Firm Conditional Co-
variation

The fluctuations in the conditional volatility of aggregates in the model, reported in
Table [3 capture movements in the average conditional covariation between firms.

To see this, notice that if X is an aggregate variable, z; is a firm level (single-firm
indexed by i) variable, and N is the number of firms in the cross-section, then:

N
1
Vt<Xt+1) = Vt(NE 9Ui,t+1)
i=1

1 N N N
= 3 <Z Vi(@ie41) +22 Z COW(@JH,%JH)_) (6.1)
i=1

i=1 j=i+1

Denote the average conditional one-firm volatility as Vtone_f "m(:zjwﬂ) = a (all firms
are ex-ante identical), and the average conditional covariation as COVy(x; ¢1+1, Tj41) =

;.- Then, the expression in (6.1)) can be written as:

1
Vi(Xpy1) = 7 (NGi2 + N(N — 1)5554) - (6.2)

With a mass of atomistic firms, N — oo and Vi(Xi4+1) — 077 [} That is, the
aggregate volatility equals the average between-firm covariation. This claim therefore
implies that the aggregate volatility oscillations in Table |3 are driven by fluctuations
in the conditional covariation.

While this claim is straightforward algebraically, I provide direct evidence that
this claim holds in the model. I construct a measure of the changes in the (aver-
age) conditional pairwise covariation between firms in the model (and data). The
methodology of constructing the pairwise covariation is described in section 4.2]

Table [4f shows by how much the conditional between-firm pairwise covariation of
variables of interest, increases or decreases, in bad times, and in good times, compared

' Equation (6.1)) is an approximation when the aggregate variable X is a growth rate, not a level. The
exact decomposition for growth rates is as follows:

N
Vt(AXt+l) = ‘/t(z wi,tA%',Hl),
i=1
Tt
E;-Vzl Tt
weighted” covariation between-firms. When firms are atomistic, this equals approximately to the “equal-
weighted” covariation between-firms.

where w;+ =

Hence, the aggregate volatility of a growth rate converges to the average “value-
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to normal periods. As in the previous section, bad, normal and good times refer to
periods is which the aggregate TFP growth is between its 0-25th, 25-75-th, and 75-
100th percentiles, respectively. The table presents the covariation fluctuations from
the learning model, and empirical counterparts.

In the model, the changes in the covariation as reported in Table 4} coincide with
the fluctuations in aggregate volatility reported in Table[3] All oscillations are identi-
cal, up to the units digit. Notice that the fluctuations in Table [3| are based on aggre-
gate time-series only, while fluctuations in Table [4| are computed using firm-level data
only. This exercise demonstrates that the methodology used in this study to measure
the unobserved ex-ante conditional volatility and covariation satisfy equation [6.2] In
unreported results, I verify that the conditional aggregate volatility fluctuations in
the no-learning model, are also identical to the oscillations in covariations.

In the data, the fluctuations in the conditional covariations are countercyclical:
covariation rises in bad times, and drops in good times. Perhaps surprisingly, the
fluctuations in the empirical pairwise covariations, are very close in magnitude to
the fluctuations in the empirical aggregate volatility. For example, the conditional
volatility of aggregate output in the data rises by 29.8% in bad times, while the
increase in the average covariation between firms’ outputs in those periods is 28.9%.
Similarly, the empirical conditional volatility of aggregate capital growth, and the
conditional covariation of capital growth rates, rise by 56.2% and 55.8%, respectively.
Given that in the data some firms are non-atomistic, as illustrated in Gabaix (2011),
the similarity of the figures is non-trivial.

What causes the conditional covariation to rise in bad times, and drop in good

times? The next section provides an answer.

6.3 Aggregate Volatility Decomposition: Implications for Average Con-
ditional Correlations

Sections [6.1] and show that the conditional aggregate volatility is countercyclical
in the learning model, due to an increase in the conditional covariation between
firms in bad times. In this section, the aggregate volatility (or average covariation)
is decomposed into firm-level volatility and average between-firm correlation. This
decomposition yields that:

A. In the model without learning, the fluctuations in the conditional volatility of
aggregates (or alternatively, in the conditional between-firm covariation), are

25



purely due to small changes in the conditional one-firm volatility. The average
correlation between firms is fixed.

B. In the model with learning, the fluctuations in the conditional volatility of aggre-
gates (or alternatively, in the conditional between-firm covariation), are largely
due to shifts in the conditional correlation between firms, that rises in bad times.

Let x; be a firm-level variable. Denote, as before, the average conditional one-firm
one—firm(

volatility as V, Tir1), and the average conditional correlation between firms
as CORR(%; 41, 4+1). Using equation 1} the volatility of the aggregate variable
X can be decomposed as:

‘/tagg(Xt+1) ~ CO‘/t(xi,tJrl, xj,t+1> == ‘/;Oneifirm(xi,t+1) . CORRt(xi,t+17 I‘j7t+1).

As a consequence, the oscillation in aggregate volatility between bad and normal
times is equal to the fluctuation in firm level volatility multiplied by the fluctuation
in the average between-firm correlation, between bad and normal times:

V,(|Bad) V7 7""(|Bad)  CORR,(-|Bad)
Vt( |Normal) Vl;/one—firm(_ ]Normal) CORRt( |NOI"II1&1) ’

(6.3)

A similar decomposition can be made for good versus normal period oscillations.
Thus, if the fluctuations in the aggregate volatility are very close to those in the one-
firm volatility, there are no fluctuations in the conditional correlation. However, if
the fluctuations in aggregate volatility differ from the one-firm volatility movements,
this indicates shifts in the conditional correlation between firms.

Tables [ and [g] respectively show by how much the average one-firm conditional
volatility, and the average between-firm correlation of variables of interest, fluctuate
in bad times and in good times compared to normal periods. As before, bad, normal
and good times refer to periods is which the aggregate TFP growth is between its 0-
25th, 25-75-th, and 75-100th percentiles, respectively. The tables present oscillations
induced by model-implied quarterly data from the learning benchmark model, and
from a no-learning model.

Comparing the figures of Table [3| and Table [5/in the no-learning case, reveals that
the fluctuations in the aggregate and one-firm volatility are small and roughly the
same. As a result, the fluctuations in the average conditional between-firm correla-
tions are minuscule, as illustrated in Table [6]
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In contrast, comparing Tables [3] 5] and [6] in the learning case, demonstrates that
the one-firm volatility fluctuations are amplified by a counter-cyclical movement in
the conditional correlation between firms. The conditional correlation between firms’
outputs rises by 32% in bad times, and drops by 29% in good times. For invest-
ment rate, the conditional correlation increases (drops) by 27.5% (28.8%) in bad
(good) times. In fact, for output growth, about 90% of the increase in the conditional
aggregate volatility in bad times is attributed to an increase in the conditional corre-
lations. For capital growth and the investment rate, the oscillation in the conditional
correlation explains about 80% of the contemporaneous increase in the aggregate
volatility. These numbers are comparable to the findings of Veldkamp and Wolfers
(2007), who decompose (unconditional) aggregate volatility into sector specific volatil-
ity, and comovement of sectors, and attribute about 80% of aggregate volatility to
the comovement term.

6.4 The Role of Bayesian Learning and Asymmetric Information for Cor-
relation Fluctuations

The fluctuations in the conditional correlations between firms, that drive the condi-
tional aggregate volatility in the learning model, are a result of the Bayesian learning
and Asymmetric information: in the bad states, firms put more weight on public
(common) information, and less on private (idiosyncratic) information. An increase
in the correlation between the posterior belief of firms, triggers policies that comove
more, and making aggregate growth rates more volatile. The Tables in this section
provide evidence in support of these claims.

First, I solve a modified learning model, having the same calibration as the bench-
mark learning model, but in which the (noise) shocks to labor efficiency, €;,; are
aggregate shocks. In other words, the shocks ¢;;; are i.i.d over time, but the same
over all firms, and hence can be denoted by omitting the 7 index as €;;. Now, privately
observed signals s; ;, obtained from firms’ output, all have the same ex-port bias (per
unit of labor), driven by the aggregate shock ¢;,. Thus, in this model, both the lagged
value of productivity growth g,_1, and the signal s;; obtained from firms’ output, are
driven by public-common information shocks. Importantly, there is still learning: the
ex-ante and ex-post uncertainties about g¢; are positive, and the weights on the pri-
vate and public signals are still time-varying with the amount of rented labor. Yet,
as no signal is idiosyncratic, shifts in the weights placed on the public and the private
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signals should not trigger significant changes in the average correlation between firms’
posterior (or policies), as there are no effective informational asymmetries.

The results of the no-informational asymmetries model, for aggregate volatility
and average correlation fluctuations in bad and good times compared to normal peri-
ods, are shown in Table[7] As conjectured, the correlation fluctuations are all close to
zero. As a result, the fluctuations in aggregate volatility are small, and all range be-
tween 0.3% to 0.6% in absolute value. Notice that the speed of learning in this model
is procyclical, in a similar fashion to the model of Van Nieuwerburgh and Veldkamp
(2006), yet without asymmetric information, the model is not capable of producing

significant fluctuations in volatility.

Second, suppose the learning model is altered such that there are both public
signals (¢g:—1) and private signals (s;, driven by idiosyncratic shocks), but learning is
not Bayesian. That is, I fix the gains (the weights) on the public and private signals
at their steady state values. The posterior mean p; 4, and variance V; 4, on g; satisfy:

Higt = mpublic((l - pg)g() + ngt—l) + mprivat‘e (Si,t> 5

_ -2 2 _—2\—1
‘/7;797t - {Og + lSSO-l ?

where:

—2
UQ

Wpublic = ——————=, Wprivate = 1 — Wpubli
public ) 9 _—2» private public
o2+ 1o
g ss71

and where [y is the steady-state level of labor (ex-ante, it is identical for all firms).
In this model, there is still learning (posterior uncertainty is positive), and there is
still asymmetric information, hence belief heterogeneity. However, since the weight
on public common information is fixed, in bad times firms do not place, by construc-
tion, more weight on common information. Consequentially, the correlation between
firms should not fluctuate. Table [§ demonstrates that this is indeed the case. The
correlation oscillations between good and bad times versus normal periods are mi-
nuscule, and thus, aggregate volatility fluctuations are small. The fluctuations in the
conditional aggregate volatility are quite close to the no-learning case, as reported in
Table[3] For instance, aggregate output volatility increases in bad times by 4.4% and
4.3% in the Non-Bayesian learning and No-learning models, respectively, while the
volatility drops by 1.5% and 2.1% in good times in these two models, respectively.
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Importantly, the oscillations in aggregate volatility in the No-Information Asym-
metry model or in the Non-Bayesian learning models, should not coincide precisely
with the no-learning model results: in both cases there is still some posterior uncer-
tainty that can deviate the results from the exact full-information case. These two
alternated learning model illustrate the importance of two separate model ingredients:
(1) Bayesian leaning, with time varying gains, and (2) Informational asymmetry.

Next, I solve the benchmark learning model (with Bayesian learning and Asym-
metric information), but calibrated with different standard deviation for the noise
labor efficiency shock (changing o;). All other model parameters are calibrated as
in the benchmark calibration outlined in Table [ Panel A of Table [J presents the
results for four noise levels: o; € {0.3,0.265 “benchmark-level”;0.2,0}. Intuitively,
the less noise (smaller o), the closer the model is to the no-learning case, and the am-
plification effect on aggregate volatility induced by average correlation fluctuations
become smaller. Aggregate volatility and average correlation fluctuations, in good
and bad times, monotonically decrease in absolute value with the noise level. In the
case where o, = 0, the private signal is perfectly revealing of the fundamental. As
a consequence, the results for the learning and no-learning models coincide, despite
different model first-order-conditions in the two cases, as shown in Panel B of Table
Ol

6.5 Volatility Fluctuations in the No-Learning Model: Falsification Tests

Table |3 shows that the oscillations in the conditional volatility of aggregates between
good and bad states, in the no-learning model are very small, yet non-zero. This
section demonstrates that the small changes in the aggregate conditional volatility
in the no-learning model, are a result of some non-linearities in the econometric
construction of the conditional volatility, mainly the usage log-growth rates, and the
usage of squared residuals in realized-volatility construction. The conclusion is that
the no-learning model results do not differ from results that one would expect to find
in a homoscedastic world.

It is hard to isolate a single source of non-linearity that generates small fluctua-
tions in the aggregate volatility in a no-learning environment. To deal with this issue,
I use a “falsification” test. I verify that constant conditional volatility processes, hav-
ing the same unconditional moments as model-implied aggregate variables, yield the
same minuscule fluctuations in the conditional volatility, when using the econometric
methodology for the construction of volatility, as described in section [4.2]
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Specifically, let log(X;) be some log aggregate time-series induced from the model.
I calibrate a process X; of the form:

Xt == (1 - Px)l’o + sztfl + Bg<gtfl - gO) + ﬁg,Q(Qtfl - 90)2 + ngg,t + 01,2(63715 - 1)7

where g, is the lagged value of productivity growth, and ¢, are the shocks to pro-
ductivity used in the model simulation. The process X, is calibrated such that the
process has the same mean, same standard deviation, same skewness, same correla-
tion with TFP growth, and same correlation with TFP growth squared, as the orig-
inal model-implied exponentiated (level) time-series X; proces{'?} Then, I construct
the conditional volatility fluctuations for log(X;) time-series, under the econometric
methodology of section , while including the lag of log(X ) as a predictor.

Notice that: (1) the process X, has, by construction, constant conditional volatil-
ity; (2) the shocks to X depend on the shocks to the aggregate TFP only, and are
taken from the model simulation (the only aggregate shock in the model is ¢,); (3)
the process can depend on the state ¢ in a linear, and non-linear fashion.

The results for aggregate volatility fluctuations, against the no-learning model, are
reported in Panel A of Table [10] Two main features arise. First, the fluctuations in
the volatility for the no-learning model time-series and for the matched homoscedas-
tic processes are quite similar. Second, the fluctuations reported for the matched
homoscedastic processes are small yet non-zero. Non-zero results can arise as I ap-
ply the log function on the Gaussian process X, and as the residuals of lOg(X ) are
squared in the volatility construction. Both of these are non-linear operations, that
introduce some small skewness, which is manifested in small volatility movements.
In unreported results, I notice that when I do not use log-growth rates, or use ab-
solute residuals (as opposed to squared residuals) in the volatility construction, the
oscillations in the conditional volatility are even smaller.

Next, I repeat the same “falsification” test for the learning model. For each
log aggregate time-series log(X;) given by the learning model, I calibrate a matched
process X,, that has the same unconditional moments as X;, but constant conditional
volatility. Panel B of Table [L0]shows that in this case, the fluctuations in the volatility
of log(X,) are tiny in comparison to the learning model-implied volatility changes.
This fact provides further evidence that the learning model results are not spurious.

Finally, I consider another source of non-linearity that stems from within the
model: the decreasing returns to scale technology (v < 1). Intuitively, a higher v

121§ log(X:) is a log aggregate growth time-series, X is a gross-growth time-series.

30



implies a closer to linear production function, which then attenuates the non-linearity
and the fluctuations in the conditional volatility, both in a learning and a no-learning
environments. In unreported results, I find that increasing (decreasing) v reduces
(amplifies) the reported conditional volatility movements.

6.6 Implications for Cross-Sectional Dispersion

The volatility implications discussed in the previous sections referred to the condi-
tional volatility, which is the predictable variation of future shocks. Another concept
of volatility is the cross-sectional variance, or dispersion. This section shows that
dispersion in the model is counter-cyclical, in spite of an increase aggregate volatility
and between-firm correlations. While ostensibly, an increase in dispersion seems to
contradict a rise in expected correlation between firms, I reconcile the two in the
data. When the average between-firm covariation increases more than dispersion
does, correlations increase too, as is also the case empirically.

It is a well-known established fact, that the dispersion of real economic outcomes,
such as output growth and earnings growth, is countercyclical (see among others
Dopke et al. (2005), Bachmann and Bayer (2013), Bloom et al. (2012), and Bachmann
and Bayer (2014)). There are a few exceptions in the data. Recently, the work
of Bachmann and Bayer (2014) showed that the dispersion of investment rate is

procyclical.

I construct a time-series of dispersion for log output and capital growth, and
investment-rate in the model using the methodology detailed in section 4.2} To mea-
sure the amount of cyclicality of dispersions, I correlate each dispersion time-series
with the business-cycle, namely, productivity growth. A negative correlation indi-
cated counter-cyclical dispersion. The results for the learning and for the no-learning
models, along with empirical counterparts are reported in table

Empirically, output growth and investment-rate dispersions exhibit a small amount
of countercyclicality (their dispersion correlates with productivity by -0.03 and -0.05,
respectively). Capital growth dispersion is procyclical, as this is consistent with the
finding of Bachmann and Bayer (2014).

In the learning model, all real growth rates exhibit almost the same amount of
slight countercyclicality. The correlation of investment-rate dispersion with TFP
growth is -0.04 in the model and in the data. Output growth’s dispersion is slightly
more countercyclical in the model than in the data.
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The evidence presented for the countercyclicality of dispersion, coincides with the
fluctuations in the one-firm volatility in the model. Dispersion, as discussed below,
is a measure of the idiosyncratic one-firm volatility (in the limit, and under certain
assumptions, the two are the same). Since one-firm volatility in the learning model
rises in bad times, and drops in good times, (see Table 5] it explains the model-implied
dispersion behavior.

The claim that the between-firm correlations rise in bad times, seems to be, at
first glance, at odds with a simultaneous increase in cross-sectional dispersion. The
two can be reconciled.

Let {x;,}, be a cross-section of some variable = time-series. Denote by {g; .},
the cross-section of demeaned times-series of z, or equivalently, the shocks to z;. In
the model, the average predictable correlation of {5i,x,t+1}i at time ¢ increases in bad
periods. Does this contradict a greater cross-sectional dispersion?

To put some structure into the answer, suppose further that one can find some
factor structure for the demeaned (shocks) time-series. In other words, assume:

it = Bily + ey,

where e;; and e;; are independent for ¢ # j. Assume that VAR (e;111) = af}t Vi,
and that VAR(Fi4q) = 0%7,5. Here, for simplicity, I assume a single common-factor,
F}, in explaining the residuals of x.

One can write the conditional correlation between the innovations of firms ¢ and
7, as follows:

BiB; VAR (Fii1)

CORRt(Ei,t+17 €j,t+1) =
VBV AR,(Frih) + VARt(ez-,tH)\/ BV AR (Fi1) + VAR (€441)

1 1
0'2 0’2

L+ g8y [1+ o

i Yt JoFt

As an approximation (or by ignoring ( heterogeneity, and denoting the average (3

as [3), the average pairwise correlation can be expressed as:
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Using a result from Garcia, Mantilla-Garcia, and Martellini (2011), the dispersion
of the residuals DISP(e,;) = VAR, (iz+), is a consistent measure of the idiosyn-
cratic volatility ait = VAR (e;1+1), assuming that a factor structure that satisfies
the standard arbitrage pricing-theory (APT) assumptions exists. The dispersion pro-
vides a consistent measure of idiosyncratic volatility, without a need to know the
actual underlying factor structure.

Suppose that dispersion rises in recessions. The above decomposition reveals
that if the average pairwise between-firm covariation, COV;, which equals to the
variation of the underlying factors, (BQU%J), increases more than residual-dispersion,
(DISP(eyy) = 02,) does in bad times, the average correlation increases too in bad
times.

The last claim holds in the data, as shown in Table [I2] The rise in average
covariation in bad times, ranges between 19% to 55%, while dispersion rises by no
more than 26%. For all variables, dispersion’s increase is always less than the point
estimate increase of covariation. Moreover, dispersion even drops in bad times for
some variables.

6.7 Robustness

The main result of this study is the ability of the learning model to yield oscillations
in the conditional aggregate volatility that are comparably close to the magnitude of
volatility fluctuations in the data, and are of a much larger scale than those induced
from a no-learning model. I show in this section that this main result is robust to
altering some of the benchmark implementation choices.

Throughout the previous sections, I defined the business cycle (namely, good,
normal, and bad times) using the TFP growth variable percentiles. I consider other
economic outcomes (that vary procyclically) for the business-cycle definition. Table
reports the aggregate volatility fluctuations, for the learning model, the no-learning
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model, and empirically, when bad, normal and good times are defined as the 0-25th,
25-75th, and 75-100th percentiles of aggregate output growth. Both in the learning
model and empirically, the implied fluctuations in the conditional volatility are quite
close to the benchmark result of Table The magnitude of the positive (nega-
tive) fluctuations in the conditional volatility in bad (good) times tend to be larger
(smaller) in absolute value when output growth is used to define the cycle, compared
to TFP growth. For the no-learning model, the volatility fluctuations are still far less
pronounced in comparison to the learning model.

Another modification to the definition of good and bad periods are the percentile
breakpoints. In Table [14] T still define the business-cycle using TFP growth, but I
use more extreme definitions for good and bad times. Good (bad) times, are periods
in which TFP growth is between its 90-100th (0-10th) percentiles. Normal times, are
periods in which TFP lies between the 10-90th percentiles. The Table shows that, as
expected, this modification amplifies, in absolute terms, the changes in the conditional
volatility both in the model and in the data. The no-learning model results are largely
unchanged. Most of the learning model-implied volatility oscillations still fall into the

empirical 90%-confidence intervals.

Lastly, the results are also robust to the predictors used to demean aggregate and
firm-level times series, and obtain the ex-ante volatility time-series. In the benchmark
specification, I use a log-linear set of predictors Z. I show in Table [I5 that when the
squared-values of the variables in Z are also added as additional predictors, the model-
implied results are almost identical. In the data, adding the non-linear predictors
tend to increase the volatility fluctuations in bad times. Empirically, it also causes
volatility to increase by a small amount in good times (though volatility in general
is still counter-cyclical, not U-shaped). In unreported results, I verify that no-single
predictor in the set of predictors Z is responsible for producing the observed behavior,
by dropping a different single predictor each time, and confirming that there are no
significant changes in the results.

7 Conclusion

The volatility of aggregate fundamentals, such as output and consumption growth, is
time-varying and increases in recessions. Recent work in macroeconomics and finance
has shown that this volatility is important for recession duration and asset-pricing: it
inhibits investment and recovery, and depresses assets’ valuation-ratios. Traditional
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models that examine the impact of volatility on the real and financial economy treat
aggregate volatility as an exogenous object. This paper attempts to fill the gap in our
understanding of macroeconomic volatility, by proposing a theory of how aggregate
volatility arises endogenously in a decentralized economy. The theory suggests that
the correlation structure between firms is an important source of macro volatility.
When firms do not observe the state of the economy, they learn about it from public
information, whose precision is constant over time, and from private idiosyncratic
information - their own output, that become more noisy in recessions as firms scale
down and produce less information. Consequentially, the correlation in the beliefs of
firms about the state of the economy rises in recessions, as firms scale down and put
more weight on public information. As a result, the policies of firms become more
correlated, contributing to a rise in aggregate volatility.

The study produces some important quantitative results. In the learning model,
the conditional volatility of aggregate output rises when TFP growth is low (bad
times) by 43%, and it drops when TFP growth is high (good times) by 32%. These
numbers fall into the 90%-confidence intervals for volatility fluctuations in the data.
Likewise, aggregate consumption’s volatility increases by 30% in bad times, in the
model and also empirically. The main economic force behind these fluctuations are
endogenous shifts in the average between-firm correlations. The average correlation
between firms’ outputs and investment-rates rises (drops) by about 30%, in abso-
lute value, in bad (good) times. Consquentially, about 80% of the increase in the
conditional aggregate volatility of total output growth, and other macro-quantities,
during slowdowns is attributed to an increase in the conditional correlations. Without
Bayesian learning, or when all information is symmetric between firms, the oscilla-
tions in the correlations over time are minute, and are therefore translated to very
small fluctuations in the conditional volatility of aggregates.
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A Appendix

To detrend the firm problem in I divide the following quantities by the lagged trend level:
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This allows re-writing the firm problem in a stationary form, as follows:
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Tables and Figures

Table 1: Benchmark Calibration

Parameter Symbol  Value
Depreciation rate of capital 0 2%
Discount factor I} 0.994
Aggregate Productivity:
Growth rate g0 1.005
Autocorrelation of aggregate productivity Pg 0.5
Standard deviation of shock oy 0.02
Idiosyncratic Demand Shock:
Mean of shock 20 1
Autocorrelation of idiosyncratic component Pg 0.9
Standard deviation of shock o, 0.01
Production:
Returns to scale v 0.9
Elasticity of capital input @ 0.22
Adjustment cost for capital ¢ 1.2
Adjustment cost for labor K 7
(Detrended) wage w 1
Standard deviation of labor efficiency shock oy 0.265
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The Table presents the benchmark calibration of the learning model, at the quarterly frequency.
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