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Abstract

What are the quantitative implications of learning and informational asymmetries,

for generating fluctuations in aggregate and cross-sectional volatility over the business-

cycle? I propose a model that relies on informational channels, for the endogenous

amplification of the conditional volatility in macro aggregates and of cross-sectional dis-

persion during economic slowdowns, in a homoscedastic-shock environment. The model

quantitatively matches the fluctuations in the conditional volatility of macroeconomic

growth rates, while generating realistic real business-cycle moments. Consistently with

the data, shifts in the correlation structure between firms are an important source of

aggregate volatility. Up to 80% of the conditional aggregate volatility fluctuations are

attributed to fluctuations in cross-firm correlations. Correlations rise in downturns due

to a higher weight that firms place on public information, which causes their beliefs, and

policies, to comove more strongly. In the data, correlations rise at recessions in spite

of a contemporaneous increase in cross-sectional volatility, as the average between-firm

covariance spikes more than dispersion does.
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1 Introduction

What are the quantitative implications for aggregate and cross sectional volatility

fluctuations, that are induced by Bayesian learning and informational asymmetry?

This study provides a micro-founded model that endogenously generates time-varying

volatility for aggregate growth rates, via imperfect information channels, while gener-

ating realistic unconditional real business-cycle moments. Macroeconomic volatility

in this paper is built in a bottom-up approach. The model suggests that endogenous

oscillations in the correlation between firms’ policies are an important source for ag-

gregate volatility fluctuations. In recessionary periods, correlations rise as a result

of stronger reliance on public information. Higher between-firm correlation is trans-

lated into higher aggregate volatility. Both learning and asymmetric information are

crucial to generate economically significant fluctuations in aggregate volatility. Em-

pirically, correlations do rise at bad times, in spite of an increase in cross-sectional

variation of real variables (dispersion), since the average between-firm covariance rises

in recessions more than dispersion does.

The importance of this study lies in the growing body of literature in macroeco-

nomics and finance, which stresses the pivotal role of higher volatility in hindering

economic recovery, growth, and asset-prices. Specifically, consider the following styl-

ized facts regarding the time-varying behavior of volatility, and its implications:

Fact (I): Aggregate and cross-sectional volatilities are stochastic:

a. The conditional volatility of real aggregate macroeconomic variables,

such as output and investment growth, rises in economic downturns.

Quarterly GDP growth has about 35% more conditional volatility in

NBER recessions (Bloom (2013)); Consumption growth’s volatility

increases by 30% in bad times (This paper).

b. The cross-sectional dispersion of real quantities produced by firms is

countercyclical. Firms’ output growth, and employment growth, are

negatively correlated with detrended GDP (see e.g. Bachmann and

Bayer (2013)).

c. The average correlation between firm-level real-variables (e.g. output,

investment), increases in economic slowdowns (This paper). This fact

complements the more established notion that the average correlation

amongst stock-returns significantly increases in recessions (see e.g.

Moskowitz (2003), Krishnan, Petkova, and Ritchken (2009)).
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Fact (II): An increase in the volatility of macroeconomic fundamentals has an ad-

verse effect on the real and financial economy; in particular -

a. Volatility reduces investment and economic activity due to a real-

option effect (see e.g. Dixit and Pindyck (1994); Bloom (2009)), or

due to a rise in the cost of capital (see e.g. Christiano, Motto, and

Rostagno (2010); Arellano, Bai, and Kehoe (2010); and Gilchrist,

Sim, and Zakrajsek (2014)).

b. Volatility lowers asset valuations, raises risk premia and increases

return volatility (see e.g. Bansal, Khatchatrian, and Yaron (2005);

Drechsler and Yaron (2011); Bansal, Kiku, Shaliastovich, and Yaron

(2014)).

The studies that examine the impacts of macro-volatility on the economy, that is,

explore fact (II) above, treat the shocks to volatility, detailed in fact (I), as exogenous

and independent of other fundamentals. Differently put, the evolution of stochastic

volatility is traditionally modeled using an exogenous process. Yet, as illustrated

in this study, a perfect-information neo-classical growth model without exogenous

stochastic volatility, generates only a negligible increase in the conditional volatility

during downturns. This raises a gap, to uncover the economic forces that lead the

volatility of aggregate fundamentals to fluctuate and rise in recessions.

This study proposes a theory for the endogenous emergence of stochastic macro

volatility, in an environment of only homoscedastic first-moment shocks. It is thus

aimed at quantitatively explaining facts (I.a) - (I.c), while generating realistic business-

cycle unconditional moments. By doing so, the work helps to bridge the gap between

the econometric findings of fact (I), and the macroeconomic and financial literature

of fact (II). I demonstrate that learning is quantitatively important to understand

the dynamics of volatility and correlations over the business-cycle1.

The model presented in this paper relies on five main ingredients: (1) Existence

of a mass of atomistic firms; (2) The aggregate TFP shock is latent, but can be fully

recovered with a continuum of signals; (3) Firms use Bayesian learning to update

their belief about the current TFP level, and by doing so they rely on both public

and private information; (4) Higher economic activity at the firm level, helps the

firm to learn about the unobserved TFP, by endowing it with more signals; and (5)

1Notably, more than one explanation is plausible for the observed behavior of volatility. The economic
forces described in this work should be viewed as a significant source of macro volatility fluctuations, among
possible others.
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It takes a lag of one period to publish any macroeconomic quantity, including any

public information about the aggregate TFP.

In a nutshell, the economic narrative of the paper is as follows. Each period,

the firm receives two signals regarding the aggregate latent TFP shock. The first

is the firm’s own privately observed output, and the second is the lagged aggregate

TFP, which serves as a public signal. On one hand, firms produce using capital

and labor. The productivity of each hour of labor is subject to an unobserved,

homoscedastic, and idiosyncratic labor efficiency shock, that captures the effect of

time-varying tiredness, motivation, and focus on human capital. Consequentially,

every hired hour of labor provides an idiosyncratic signal, with fixed precision on

the aggregate state. Thus, firms that hire more labor, have a better ratio of signal

to noise. In bad times, firms choose to reduce their rented working-hours, due to

decreased profitability. Reducing the amount of labor drops the precision of the firm’s

private idiosyncratic signal (output) in recessionary periods. On the other hand, as all

firms are atomistic, a central-household that observes all firms’ outputs can become

perfectly informed about the underlying TFP by the end of the period. Publishing

this recovered aggregate TFP in a lag, is equivalent to a signal on today’s TFP with

fixed precision, as all shocks are homoscedastic. As a result, in bad times, firms

place more weight on public information, and less on their idiosyncratic information,

when constructing their beliefs on the current state of the economy. This generates a

greater comovement in the beliefs of firms in economic slowdowns, and hence, a larger

comovement in their investment and labor policies. The higher degree of correlation

amongst firms in bad times increases the volatility of aggregate quantities, such as

output and consumption.

When calibrated at quarterly frequency to match the unconditional moments of

consumption and output growth rates, the learning model amplifies the oscillations in

the conditional volatility of aggregate growth rates, while a no-learning model, similar

to the neo-classical firm problem, produces only minuscule changes in the conditional

volatility. In the learning environment, consumption growth’s volatility rises in bad

periods (when TFP growth is low) by 29% in the model versus 32% in the data, while

it falls in good times (when TFP growth is high) by 20% and 14% in the model and in

the data, respectively. For comparison, in the no-learning environment, the volatility

of aggregate consumption fluctuates by merely 3% in bad times. Similar results are

obtained for other macro growth rates. Capital’s growth volatility increases in bad

times by 57% and by 56%, in the model and in the data.
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I further establish that the movements in the conditional volatility of aggregates,

capture shifts in the average conditional covariation between firms, as all firm-specific

volatility is effectively diversified away at the aggregate level. While this claim holds

exactly in the model in which firms are atomistic, I show that it roughly holds in the

data as well, in spite of the fact that empirically some firms are non-atomistic (see

e.g. Gabaix (2011)).

Since aggregate volatility amounts to the average covariation between firms, I can

then decompose aggregate volatility. The fluctuation in aggregate volatility between

bad and normal periods is equal to the fluctuation in firm-level volatility multiplied

by the fluctuation in the average between-firm correlation. In the no-learning model,

the small fluctuations in the conditional volatility of aggregates, are shown to be

driven by small changes in the conditional firm-level volatility, while the average

correlation between firms is approximately constant. By contrast, in the learning

model, the fluctuations in the conditional volatility of aggregates, are largely due

to shifts in the conditional correlation between firms, that rises in bad times. The

average correlation between firms’ outputs increases by 32% in bad times, and drops

by 29% in good times. For all aggregate growth variables, about 80% to 90% of

the increase in the conditional aggregate volatility in bad times is attributed to an

increase in the conditional correlations.

The endogenous fluctuations in the average correlation in the learning model stem

from two main model ingredients: (1) Bayesian leaning, with time varying gains, and

(2) Informational asymmetry. To show this, I shut down each of those channels

separately. Namely, I solve a modified learning model in which the labor noise shocks

are aggregate rather than idiosyncratic, thus eliminating informational asymmetries

between firms. In addition, I solve an alternative model in which the weights that

firms place on the public and private signals are fixed, and do not vary with the actual

gain (non-Bayesian learning). Both of the modified models lack the ability to produce

significant volatility fluctuations. Thus, a rise in (belief) uncertainty in bad times, as

some earlier works feature, is not sufficient to produce enough realized volatility at

the aggregate level.

Lastly, I show that the cross-sectional variation in the model, or dispersion, is

also countercyclical, as is also the case empirically. The correlation of output growth

dispersion with TFP is negative in the model and in the data. This is a result of a rise

not only in aggregate volatility, but also in firm-level volatility in bad times, in the

model. Ostensibly, an increase in dispersion seems to contradict a rise in the expected

correlation between firms. I reconcile the two by showing that if the average between-
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firm covariation, increases in magnitude more than dispersion does in downturns, the

average correlation increases as well. In the data, the rise in the average covariation

in bad times ranges between 19% to 55%, while dispersion rises by less.

The rest of the paper is organized as follows. Section 2 offers a discussion of

related literature. In section 3, I provide the economic model. Section 4 presents the

data and the econometric methodology used to construct the conditional volatilities

and correlations. In Section 5, I report the model calibration and its implications for

unconditional business-cycle moments. Section 6 discusses the main results of this

paper: the implications of learning for the fluctuations in the aggregate conditional

volatility, both in the model and empirically, and its decomposition into firm-level

volatility and average correlation. The section also presents the implications of the

learning model for cross-sectional volatility, and establishes the robustness of the

results. Section 7 provides concluding remarks.

2 Related Literature

This study relates to several strands of literature. The closest studies that my work is

relates to, are theoretical macroeconomic models that aim at explaining why objects

like uncertainty, volatility and dispersion vary over time, both at the firm-level, and

at the macro level. A growing number of recent papers attempt to endogenize un-

certainty, mainly in centralized economies, over the business cycle (that is, why the

volatility of agents’ beliefs over the state of the economy increases in recessions). In

Van Nieuwerburgh and Veldkamp (2006), procyclical learning about productivity gen-

erates countercyclicality in firm-level uncertainty that may relate to countercyclical

movements in asset prices.2 Fajgelbaum, Schaal, and Taschereau-Dumouchel (2013)

also endogenize uncertainty level, and link it to economic activity via learning: higher

uncertainty about the fundamental discourages investment, which in turn results in

fewer signals about the fundamental, thus keeping uncertainty levels high, which

discourages investment further. Similarly, Orlik and Veldkamp (2013) show that a

Bayesian forecaster who revises model parameters in real-time, experiences counter-

cyclical uncertainty shocks, even if the underlying process is homoscedastic. This

occurs as the agent is more confident in predicting the future when growth is normal,

while sudden “unfamiliar” events in recessions make it harder for the forecaster to
2Related work to Van Nieuwerburgh and Veldkamp (2006) includes Ordoñez (2013). Ordoñez (2013)

argues that the speed of boom and busts depends on the financial system of the country. In his work
however, beliefs are only public and the state of the economy is the volatility of productivity. Thus, volatility
is exogenously stochastic, while this work features homoscedastic volatility.
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make predictions. A key difference between this paper and the former works, is that I

focus on volatility, or in other words, the time-varying predictable variation of realized

quantities, while the former discuss uncertainty levels, that is, the forecasting error

squared is time-varying. The former works do not predict that firms’ actual policies

are necessarily becoming more volatile, or that the correlation between firms’ policies

is fluctuating.

Other recent works endogenize firm-level volatility, or dispersion, in good versus

bad periods. Bachmann and Moscarini (2011) show that downturns offer the oppor-

tunity for firms to drastically alter their pricing policy, or to “experiment”, allow-

ing them to better learn their firm-specific demand function. This experimentation,

mainly performed to decide whether to exit the market, is the driver of cross-sectional

dispersion in the prices of firms. In Decker, DErasmo, and Boedo (2013), first mo-

ment TFP shocks enable firms to expand to more markets and expose firms to an

increased number of market-specific shocks, which reduces firm-level volatility by di-

versification. Related, Tian (2015) also endogenizes productivity dispersion over the

business-cycle. These works focus on (micro) cross-sectional volatility. They do not

explicitly examine whether this micro volatility feeds into higher aggregate quantities.

In contrast, this work propagates the notion that an important source of aggregate

volatility is not merely an increase in individual firms’ idiosyncratic volatility, but

rather an increase in the correlation between individual firms’ policies.

Some related papers explicitly discuss aggregate volatility, which is the main focus

of this work. One contributor to aggregate volatility may come from Governments

and Central Banks. Pastor and Veronesi (2012) argue that policy becomes more

volatile during recessions because policy makers wish to experiment. In economic

downturns, politicians are drawn to experiment as they attempt to boost growth.

While this explanation directly feeds to macro volatility, it differs from the bottom-

up approach of the decentralized economy, taken in this paper. Gabaix (2011) shows

that idiosyncratic firm-level fluctuations can explain a significant portion of aggregate

shocks, when some firms are non-atomistic or “granular”. His study however, focuses

on unconditional aggregate volatility, not on its cyclical behavior. Kelly, Lustig, and

Van Nieuwerburgh (2013) endogenize firm level volatility (dispersion) using a different

framework than mine: consumer-supplier business networks, with some implications

for aggregate volatility. More related, Ilut, Kehrig, and Schneider (2013) show that

when hiring decisions respond more to bad signals, due to ambiguity about the level of

noise, both aggregate conditional volatility and dispersion of labor growth are coun-

tercyclical. A similar idea is used in the context of stock return correlations, in the
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works of Ribeiro and Veronesi (2002), and Ozsoy (2013). As opposed to my quantita-

tive study, that embeds learning in a real business cycle environment, the work of Ilut

et al. (2013) is mostly qualitative. My work also employs a different learning mech-

anism. The papers of Thesmar and Thoenig (2004), Comin and Philippon (2006),

and Comin and Mulani (2006), also target aggregate volatility by trying to explain

the so-called “great moderation” in the volatility of aggregate returns and output

(see Stock and Watson (2003)). However, these works target the ostensible trend in

aggregate volatility, while they do not generate fluctuations of aggregate volatility

over the business cycle.

The second body of works related to this paper are studies discussing the social

value of public information, starting with the influential work of Morris and Shin

(2002). The work of Amador and Weill (2012), shows that increasing public informa-

tion slows down learning in the long run, and may reduce welfare. While aggregate

volatility fluctuates in their model, their stylized framework exhibits a hump shape

for volatility over time, that converges to zero in the long run, and does not explain

why volatility increases in recessionary periods.

Related, Angeletos and La’O (2013) show that even without aggregate TFP

shocks, sunspot public shocks that purely affect agents’ belief about the state of

the economy, without altering the underlying technology or preferences, termed “sen-

timents”, create aggregate fluctuations. While their framework highlights that public

information can serve as an important source of aggregate fluctuations, it produces

fixed volatility for aggregate output. A closer work of Angeletos, Iovino, and La’O

(2011) demonstrates, in a comparative static manner, that more precise public in-

formation reduces dispersion, but can increase the volatility of aggregate output. In

contrast, in my work the precisions of the signals is time-varying, allowing to ob-

tain stochastic volatility. In addition, my work is quantitative in nature, and targets

objects that are absent from the former works, such as investment rate and capital

growth. My work complements these works in that my focal point is different. I

harness the use of time-varying weights on public and private information to obtain

aggregate volatility that varies over the business cycle.

The third branch of studies my paper is related to, are econometric papers that

document that macro volatility, micro volatility (or cross-sectional volatility), and

also correlations, rise in recessions. Bloom (2013) documents that industrial produc-

tion growth, based on GARCH models, has about 35% more conditional volatility in

recessions. In the context of stock returns, Bloom (2013) and Bekaert, Hoerova, and

Lo Duca (2013), report that the VIX level is countercyclical, and increases by 58% in
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recessions. Other meaures of macro uncertainty also increase in bad times. Jurado,

Ludvigson, and Ng (2013) use monthly economic series in a system of forecasting

equations and look at the implied forecasting errors. They find a sharp increase in

recessionary periods, and in particular, in the Great Recession. The works of Higson,

Holly, and Kattuman (2002), Döpke, Funke, Holly, and Weber (2005), Jorgensen,

Li, and Sadka (2012), Kehrig (2011), Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012), and Bachmann and Bayer (2013), provide extensive evidence that

cross-sectional variance, or dispersion, is also highly countercyclical, for various eco-

nomic outcomes including output growth, sales growth, employment growth, earnings

growth, and Solow residuals. Investment-rate dispersion however, seems to be pro-

cyclical, as pointed by Bachmann and Bayer (2014). Moskowitz (2003), in the con-

text of stock returns, uses a multivariate-GARCH approach to show that conditional

correlations exhibit significant time variation, increase during recessions, and were

extremely large during the 1987 stock market crash. Similarly, Krishnan et al. (2009)

use average realized correlations of stock returns, and show that it significantly rises

in recessions. My work contributes to these findings by empirically showing that the

correlation of fundamentals, such as investment-rate and output growth, increases in

recessionary periods, and explains fluctuations in aggregate volatility of fundamentals.

The last strand of papers my work relates to are macroeconomics and asset-pricing

works that stress the importance of aggregate volatility in explaining business-cycle

fluctuations, economic growth and risk premia. Bloom (2009) shows that increased

volatility, measured via VIX, leads to an immediate drop in output and investment

growth rates as firms delay their investment decisions. The work of Fernandez-

Villaverde, Guerrón-Quintana, Rubio-Ramirez, and Uribe (2011) discusses uncer-

tainty in an open-economy context, showing that higher volatility lowers domestic

investment. Other works argue that higher volatility increases the cost of capital, or

credit spreads, hence makes investment more costly (see e.g. Christiano et al. (2010);

Arellano et al. (2010); and Gilchrist et al. (2014)). Basu and Bundick (2012) rely

on nominal rigidities to show that both consumption and investment can drop in

response to volatility shocks. Other works rely on alternative economic forces which

can yield a positive relationship between volatility and investment. These channels

include precautionary savings, time-to-build, or investment irreversibility (see e.g.

Abel and Eberly (1996); Bar-Ilan and Strange (1996); Gilchrist and Williams (2005);

Jones, Manuelli, Siu, and Stacchetti (2005); Malkhozov (2014); and Kung and Schmid

(2014)). Importantly, these papers treat volatility shocks as exogenous, while in this

paper I treat volatility as an endogenous object.
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3 Model

This section describes the theoretical framework that generates stochastic aggregate

volatility in a homoscedastic world. The economy is comprised of a mass of firms,

indexed by i ∈ [0, 1], and one representative household, who owns all firms and

consume their dividends. Below I describe the problem faced by firms, the household,

and a definition of an equilibrium in this setup.

3.1 Aggregate Productivity

Aggregate productivity, denoted by Gt, evolves as geometric random walk with time

varying drift. Specifically, Gt+1 = Gt · gt, where

gt = (1− ρg)g0 + ρggt−1 + σgεg,t,

and where εg,t ∼ N(0, 1)3. Notice that the conditional volatility of aggregate produc-

tivity growth is constant. Further, note that gt is the gross-growth rate of productiv-

ity, and I assume that the mean growth rate g0 > 1 is sufficiently large, in comparison

to the volatility of the shock σg such that gt is always positive.

It is assumed that aggregate productivity is a latent variable. This is also the case

in the real world: total factor productivity is unobserved, but can be recovered by

observing real aggregate macroeconomic growth rates. Both firms and the household

learn about the current and past levels of productivity from publicly and privately ob-

served signals. All information regarding the productivity shock is obtained from real

(noisy) economic outcomes. As explained later, all agents become perfectly informed

about any lagged level of aggregate productivity, but there is uncertainty regarding

the current period’s productivity growth gt.

3.2 Firms

Each firm is operated by a manager. The firm operates on an island. As a result,

all aggregate quantities, including aggregate productivity level, become observable to

the firm in a lag of one period. This assumption parallels to the real world, in the

sense that aggregate quantities are usually published in some lag. Specifically, at the

beginning of every period t, the manager of the firm gets an input from its owner (the

3Notice that Gt is predetermined.
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household): last period’s aggregate productivity growth gt−1
4. This assumption is

consistent with the availability of data in reality: the San-Fransisco Federal Reserve

Bank, for instance, publishes a TFP time-series, in a lag of one-quarter5. In return,

the firm ships back to the owner its current period dividend after producing and

investing.

Firms produce output using capital and labor. Firm i has a stock of capital ki,t,

and rented labor inputs (measured in time-units, or hours) li,t.

Capital evolves according to:

ki,t+1 = (1− δ)ki,t + Λ(
Ii,t
ki,t

),

where δ is the depreciation rate, and Ii,t is the investment level at period t. The capital

adjustment cost function Λ is specified as in Jermann (1998): Λ(
Ii,t
ki,t

) = α1

1− 1
ζ

(
Ii,t
ki,t

)1−
1
ζ +

α2. The parameter ζ represents the elasticity of the investment rate with ζ → ∞
representing infinitely costly adjustments. The parameters α1 and α2 are set such

that there are no adjustment costs in the deterministic steady state.

Labor to be used in period t is rented in the period t− 1 for a wage wt per unit of

time (hour). The wage exogenously grows at the same rate as aggregate productivity,

and is given by wt = w ·Gt−1
6. Adjusting the labor force, requires a non-pecuniary

adjustment cost, and is given by ΦL(li,t, li,t+1) = Gt · κ2 · (lt+1− lt)2. These adjustment

costs capture, in a reduced form manner, the costs induced by the friction of search.

In the absence of consumption smoothing in a risk-neutral setting, this adjustment

cost is vital to make labor growth, and hence output and consumption growths,

sufficiently persistent.

Firms also face two idiosyncratic shocks. First, firms revenue is affected by an

observed demand shock zi,t, that evolves according to an AR(1) process:

zi,t = (1− ρz)z0 + ρzzt + σzεi,z,t,

4Alternatively, the firm’s input is the aggregate productivity level of period t− 1. This is an equivalent
assumption, as the productivity level of time t − 2 is already in the information set of the firm at time t.
Dividing aggregate productivity level of time t− 1 with that of time t− 2 yields gt−1.

5The quarterly TFP data relies on Basu, Fernald, and Kimball (2006) and Fernald et al. (2012).
6As labor is hired in period t − 1, I specify a wage that incorporates only time t − 1 information. The

reason that labor is pre-hired in my setting is that otherwise, one could potentially learn with certainty
the current level of productivity growth gt simply by observing the current labor wage. By making labor
predetermined, the current wage reflects merely gt−1, which is already known to the firm at time t.
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where the innovation is conditionally homoscedastic, and εi,z,t ∼ N(0, 1). The second

idiosyncratic shock, εi,l,t, is a shock to the efficiency of labor. It is assumed to be a

latent i.i.d. shock across time and across firms, with εi,l,t ∼ N(0, 1). This condition-

ally homoscedastic shock captures disturbances to the efficiency of the labor force,

that are unobserved to the firm, such as time-varying levels of focus, tiredness and

motivation that may affect a human resource.

The production technology of firm i at time t is therefore given by:

yi,t = G1−α
t zi,tk

α
i,t(gtli,t + σlεi,l,t)

ν−α, (3.1)

where ν ∈ (0, 1) is the the total returns to scale. This specification is similar to that

used in Van Nieuwerburgh and Veldkamp (2006), but augmented to support labor and

growth. It is a reduced-form production function that captures a very basic notion:

bigger firms who acquire more labor, and have a higher economic activity, have a

higher loading on the aggregate TFP growth gt, and enjoy a preferable signal to noise

ratio, as illustrated next. This assumption can be motivated explicitly by breaking

the total labor time stock li,t into operating time-units (hours), each of which provides

another signal on the aggregate TFP shock. Below I outline briefly a microfounded

explanation for the emergence of such a production function.

Suppose that each firm operates by hiring its labor force to work for li,t hours. For

motivational purposes think of li,t as discrete. The productivity of the labor force,

per hours ` ∈ [1..li,t], varies. As mentioned earlier, this assumption captures the effect

of time-varying tiredness, or motivation. Specifically, in every hour `, the labor force

productivity, in labor efficiency units, is gt + σlηi,`,t, where gt is the aggregate shock

of the labor augmenting technology, and ηi,`,t is an idiosyncratic efficiency shock,

independent over firms and hours, and distributed N(0, 1). All ηi,`,t shocks are latent,

and so is gt.

By integrating over all hours, the firm’s total labor input, in efficiency units can

be written as: gtli,t + σl
√
li,tεi,l,t, where εi,l,t ∼ N(0, 1). To make sure that all shocks

are explicitly homoscedastic, I choose to solve a version of the model in which the

labor efficiency is simply gtli,t + σlεi,l,t, as specified in equation (3.1)7.

It is assumed that neither the current aggregate productivity growth gt, nor the

additive idiosyncratic productivity shock to labor εi,l,t is observed by the firm. Firms

learn about the state of the economy, that is on gt, by receiving two types of signals.

7Solving a version of the model in which εi,l,t is pre-multiplied by σl
√
li,t yields quantitatively very

similar results.
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The first signal, is the firm’s own privately observed idiosyncratic output. Rewriting

the firm’s output as a signal on gt, one obtains:

si,t =
1

li,t

(
yi,t

G1−α
t ztkαi,t

)( 1
ν−α)

= gt +
σl
li,t
εi,l,t. (3.2)

Thus, the precision of the private signal is l2i,tσ
−2
l , which is time varying and

increases with the amount of labor the firm rents. This assumption makes some

intuitive sense: bigger firms have better access to information due to more operating

branches, and access to different segments of the market. The firm’s output can be

written in terms of the observed signal: yi,t = G1−α
t zi,tk

α
i,t(si,tli,t)

ν−α.

The second signal, which is analyzed next, is the publicly observed level of lagged

aggregate productivity growth gt−1. It is assumed that as the firm lives on an island,

the only information its manager observes is what is shipped by its owner. In other

words, each firm can observe aggregate productivity, sent from its owner to the island,

and all other aggregate quantities or prices without restriction, in a lag of one period.

With a mass of firms, the assumption that aggregate consumption growth, or

output growth are fully observed by the firm in a one-period lag, is equivalent to

assuming that gt−1 is observed in a lag with certainty. The intuition is that at the

aggregate level, all idiosyncratic shocks are diversified, thus fully revealing aggregate

productivity growth. Aggregate consumption growth at time t, for instance, would

be a function of gt and the distribution of capital and labor. Assuming that the

distribution of capital becomes known to the manager in a lag, once the distribution

of resources is fixed, consumption is monotonically increasing with gt. Hence, one

can find a one-to-one mapping between aggregate consumption growth level, and gt,

conditioning on the distribution of capital and labor. The conclusion is therefore that

observing aggregate real quantities in a lag does not provide any further information

on today’s gt, beyond observing gt−1 directly, which is sent to the firm at the beginning

of period t.

By equation (3.1), gt−1 can be perceived as a public signal on gt with fixed preci-

sion, where the mean of the signal is (1 − ρg)g0 + ρgt−1 and the precision is σ−2g , by

the assumption of homoscedastic shocks. As firms cannot obtain any information on

the current level of gt that is not contained in gt−1, this public signal determines the

common prior for all firms on gt, at the beginning of the period.
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At the beginning of each period, the firm first produces using its capital and labor

stocks that are predetermined in the last period. Then, using the public signal gt−1,

and using its own private idiosyncratic signal (its output, or alternatively si,t), it

forms a posterior belief on what today’s level of gt is. Using this belief, the firm picks

its level of next period capital ki,t+1, that is, the firm chooses its investment level,

and also hires its next period labor force, li,t+1.

The private and the public signals the firm obtains can be collapsed into one pos-

terior belief, that weights the private and the public information with their respective

relative precisions. By Bayes rule, the weight the firm will put on the private signal

si,t, and on the public signal, are given by:

wprivate,i,t =
l2i,tσ

−2
l

l2i,tσ
−2
l + σ−2g

; wpublic,i,t = 1− wprivate,i,t. (3.3)

In bad times, when aggregate TFP growth is smaller, li,t is on average smaller as

firms optimally choose to scale down, invest less, and hire less labor. Consequentially,

expression (3.3) demonstrates that the firm puts more weight on the public informa-

tion in recessions, and less on its own idiosyncratic signal. Thus, posterior beliefs are

becoming more correlated among firms in recessions, triggering a higher correlation

between the policies of firms, and contributing to a higher aggregate volatility.

The manager is trying to maximize the firm’s value, given his own public and

private information. The information set of the manager at the beginning of the

period t, right after producing, is given by: ki,t, the firm’s capital, li,t, the firm’s

labor, si,t, the productivity signal obtained from the firm’s private output, gt−1, the

public signal, and lagged level of aggregate productivity Gt−1. Given this information

set, the manager solves the following maximization problem:
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Vi,t(ki,t, li,t, Gt−1, gt−1, si,t, zi,t) = maxki,t+1,li,t+1
G1−α
t zi,tk

α
i,t(si,tli,t)

ν−α − wtli,t − Ii,t
−ΦL(li,t, li,t+1)

+βEt[Vi,t+1(ki,t+1, li,t+1, Gt, ĝt, si,t+1, zi,t+1)]

s.t.

ki,t+1 = (1− δ)ki,t + Λ(
It
kt

)

Λ(i) =
α1

1− 1
ζ

(i)1−
1
ζ + α2

ΦL(li,t, li,t+1) = Gt
κ

2
(li,t+1 − li,t)2

wt = Gt−1w

Vi,g,t = [
1

σ2
g

+
l2i,t
σ2
l

]−1

µi,g,t = Vi,g,t[
1

σ2
g

((1− ρg)g0 + ρggt−1) +
l2i,t
σ2
l

(si,t)]

ĝt = µi,g,t +
√
Vi,g,tεi,µ,t; Gt = Gt−1gt−1

si,t+1 = [(1− ρg)g0 + ρgĝt + σgεg,t+1] +
σl
li,t+1

εl,t+1

εi,µ,t = (gt − µi,g,t)/Vi,g,t ∼ N(0, 1), (3.4)

where µi,g,t and Vi,g,t are the posterior mean and variance (uncertainty) of the

belief on gt. ĝt, the stochastic belief on gt, is defined as ĝt = µi,g,t + (gt − µi,g,t) =

µi,g,t+
√
Vi,g,tεµ,i,t, where εµ,i,t ∼ N(0, 1). When computing the continuation value, the

manager uses his belief ĝt to project the evolution of all variables that are contingent

on gt, including future aggregate and private signals.

3.3 Household

There is one infinitely lived representative household in the economy, that holds

all firms, and exerts utility from a consumption stream of Ct. It is assumed that

the household is risk neutral. The time discount rate of the household is β. The

household derives income from dividend payments from its diversified portfolio of

corporate stocks.

After firms produce, and ship back their dividend to the household, the represen-

tative household gets to observe the output of all firms, comprising together a mass of
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signals {si,t|i ∈ [0, 1]} on gt with finite precisions. As a result, the household becomes

perfectly informed about aggregate productivity growth by the end of period t, and

consequentially, she sends the recovered gt to the managers at the beginning of period

t + 1. In other words, fully learning the value of gt by the household occurs at the

end of the period. This assumption captures the notion that collecting the data from

a mass of individual firms, and analyzing it to extract productivity growth requires

some time and effort. This assumption also ensures that the household information

regarding the fundamentals, at the beginning of period t when prices are set, is not

better than that of the managers who operate on the islands. The information set of

the household, at the beginning of period t is therefore any aggregate real quantity

shipped back from the firms, including aggregate output, capital, and labor growth

rates, and lagged aggregate productivity.

3.4 Equilibrium

An equilibrium is comprised of capital and labor policies for each firm i ∈ [0, 1], k∗i,t+1

and l∗i,t+1, and firm valuations Vi,t, such that:

1. Given the information set of the manager, the policies k∗t+1 and l∗t+1 solve the

firm problem in (3.4).

2. Markets clear: aggregate consumption satisfies, Ct =
∫
i∈[0,1] yi,t − I

∗
i,t.

3. The valuation of a firm i is given by Vi,t.

4 Data and Volatility Measures

4.1 Data

I collect both annual and quarterly data on real macroeconomic aggregate growth

rates, from 1946 to 2013. Annual time-series are used for calibration purposes, while

the higher frequency quarterly time-series are used for the construction of aggregate

volatility measures. While some aggregate time-series span longer into pre-war era,

I use only postwar data to ensure that all aggregate time-series correspond to the

same time span, given the availability of the data. Consumption and output data

come from the Bureau of Economic Analysis (BEA) NIPA tables. Consumption

corresponds to the real per capita expenditures on non-durable goods and services and

15



output is real per capita gross domestic product. Quarterly time-series are seasonally

adjusted. Data on capital and investment are taken from the Flow of Funds for

all private non-financial corporate businesses. Capital corresponds to total assets,

and investment corresponds to total capital expenditures8. CPI data are taken from

the Federal Reserve Bank of St. Louis. The real per-capita growth rate of capital,

is computed by dividing capital by the mid-point population estimate from NIPA

tables, and subtracting inflation obtained from CPI data. Annual and quarterly

Data on Average Weekly Hours of Production per worker are taken from the Bureau

of Labor Statistics (BLS). Data on TFP growth are obtained from the San-Fransisco

Federal Reserve Bank. All aggregate growth time-series, including investment to

capital ratio, are in log form.

To obtain cross-sectional data, for the purposes of constructing cross-sectional

volatility and between-firm correlation measures, I use quarterly Compustat data.

To construct a cross-sectional menu of assets, I group Compustat firms into industry

portfolios. I choose to work with industry portfolios, instead of firm-specific data,

as this reduces the amount of noise and measurement error in each individual asset

time-series, and mitigates biases that may result from entry and exit of firms. Notice

further, that there are no shifts of individual firms between portfolios over time.

Industry portfolios are formed using the SIC code definitions as in Fama-French Data

Library, for 38 industry portfolios. I exclude financial and utility industry firms

from the sample, and hence, left with 31 industry portfolios. I use sales, capital

expenditures, and total assets as proxies for firms’ output, investment and capital.

Industry levels of output, investment, and capital are therefore defined as the sum

of the total sales, capex, and assets levels, for all firms within the industry at time

t. Industry sales, total assets, and capital expenditures time-series begin at 1966-Q1,

1975-Q1, and 1985-Q1, respectively. Prior to these starting dates, some portfolios,

or all, have missing observations. All industry time-series end at 2013-Q4. As data

are quarterly, they exhibits strong seasonality. I remove seasonality from industry

level time-series, by using X-12-ARIMA filter at the quarterly frequency. The real

growth rates of the seasonally adjusted time-series are then computed by subtracting

the quarterly inflation rate.

8Though there are other suitable variables to measure investment, the use of capital expenditures allows
better comparison to Compustat data in which capex is also available.
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4.2 Measurement of Aggregate and Cross-Sectional Conditional Volatil-

ities

To measure the conditional volatility of an aggregate time-series, in the data or in the

model, we first need to specify the information set of the econometrician at time t.

To ensure the construction of the conditional volatility in the data is identical to the

construction procedure within the model, I assume that the information available to

the econometrician is the same as the information set available to the household at

time t. Differently put, our household, who collects the data from individual firms,

and publishes aggregate quantities, is the econometrician.

Let ∆Xt be the log growth of some aggregate time-series (∆Xt = log( Xt
Xt−1

)). To

compute the conditional volatility Vt(∆Xt+1), I follow two steps. First, I remove the

conditional mean of the time-series by projecting future ∆Xt+1 on a set of time t

predictors Zt:

∆Xt+1 = b0 + b′xZt + εx,t+1, (4.1)

where εx,t+1 captures the conditionally demeaned, or innovation time-series of ∆Xt.

Second, I project future squared innovations on their own lag, and the same set of

time t predictors Zt:

ε2x,t+1 = ν0 + ν ′x[ε
2
x,t, Zt] + error, (4.2)

and take the fitted value of the projection above as the ex-ante conditional volatility

of ∆Xt+1, that is, Vt(∆Xt+1) = ν0 + ν ′x[ε
2
x,t, Zt]. In the benchmark implementation

of the above procedure, both in the model and in the data, the set of the benchmark

predictors Zt includes real aggregate log output growth ∆Yt, real aggregate log capi-

tal growth ∆Kt, real aggregate log labor growth ∆Lt, real aggregate log investment

to capital ratio I/Kt, and the log lagged productivity growth rate. This information

set is equivalent to all aggregate variables that are observed by the household at the

beginning of period t. Although this information set is log-linear in the underlying

state variables, I find that it maximizes the Akaike Information Criterion of projec-

tion (4.1), and the results are robust to the inclusion of higher order powers of the

underlying aggregate state variables.

Similarly, let ∆xi,t be the log growth of some single-firm (indexed by i ∈ [1, ..., N ])

time-series (or alternatively, some single-industry portfolio i time-series in the data),

where N is the number of individual assets in the sample. To measure the conditional

volatility of a one-firm i time-series, I follow a similar procedure. At the firm stage, I
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remove the conditional mean of the one-firm time-series by projecting future one-firm

growth rates on their own lag and the set of predictors Zt:

∆xi,t+1 = bi,0 + b′i,x[∆xi,t, Zt] + εi,x,t+1. (4.3)

Next, the ex-ante conditional one-firm i volatility V one−firm
t (xi,t+1) is the fitted value

of the predictive projection:

ε2i,x,t+1 = νi,0 + ν ′i,x[ε
2
i,x,t, Zt] + error. (4.4)

Measuring the conditional covariation between two firms’ time-series, ∆xi,t and

∆xj,t (i, j ∈ [1, .., N ]), involves a two-stage procedure, consistently with the condi-

tional volatility measurements. First, the conditional mean is removed from ∆xi,t and

∆xj,t, by applying the projection (4.3) twice: once for firm i, and once for firm j. The

first stage provides two demeaned (innovation) time-series εi,x,t and εj,x,t. Second, I

project the interaction of future firm i and firm j shocks, εi,x,t+1εj,x,t+1, on its own

lagged value, and the set of predictors Zt:

εi,x,t+1εj,x,t+1 = c0 + c′x[εi,x,tεj,x,t, Zt] + error, (4.5)

The ex-ante conditional covariation, is obtained from the fitted value of the above

projection: COVt(∆xi,t+1,∆xj,t+1) = c0 + c′x[εi,x,tεj,x,t, Zt].

Lastly, the dispersion of a growth variable ∆x, at time t, is directly computed as

the cross-sectional variance of {∆xi,t|i = 1..N}, that is: DISPt(∆xt) = Vn(∆xi,t).

The residual (or ex-post) dispersion of a growth variable is defined as the cross-

sectional variance of the innovations {εi,x,t|i = 1..N} at time t, or: DISPt(εx,t) =

Vn(εi,x,t).

5 Calibration and Unconditional Moments

5.1 Parameter Choice

Table 1 reports the parameters that I use for the benchmark calibration of the model,

under risk neutrality. The model is calibrated at a quarterly frequency. Some choices

of the production parameters are dictated by standard choices in macroeconomics. I

set the degree of returns to scale to η = 0.9 consistent with Basu and Fernald (1997)

and Gomes, Kogan, and Yogo (2009). The elasticity of capital input is α = 0.22,
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generating a capital share of output α
ν

of approximately 25%, and a share of labor

of 75%. I select a depreciation rate of capital to be a conservatively standard value

of δ = 2%, or an effective rate of 8.2% at an annual frequency, consistently with

the annual depreciation rate of capital in the data. This depreciation rate yields an

annual investement-to-capital ratio of about 10%, which is comparable with the data.

The key parameters that affect the learning ability are the standard deviations of

aggregate productivity and noise shocks. The standard deviation of aggregate pro-

ductivity shock determines the amount of prior uncertainty a manager has regarding

today’s level of productivity growth gt. I set the standard deviation of aggregate

productivity shock at a relatively high value for quarterly frequency, of σg = 0.02.

Calibrating this parameter at lower, more conservative value, reduces the ability of

the model to amplify conditional volatilities via learning, as the prior uncertainty

becomes too small to provoke a significant impact.

The standard deviation of aggregate productivity is given by
√
σ2
g/(1− ρ2g), where

ρg is the autocorrelation parameter of aggregate productivity. To ensure this standard

deviation is not too high (in the presence of high σg), I then need to pick a relatively

small value for ρg. I set ρg = 0.5, which then implies a standard deviation of 2.3%

for aggregate productivity. While this standard deviation is still high, setting ρg at

significantly lower values then implies uncrealistically low autocorrelations for real

growth rates in the model.

Since the autocorrelation parameter is now relatively low, while the standard de-

viation of aggregate productivity is large, I smooth consumption and output growth

using the adjustment costs parameters. I set the adjustment cost parameter of capital

to ζ = 1.2, comparably with ζ = 0.8 in Kung and Schmid (2014). The adjustment

cost of labor is set to κ = 7. These adjustment costs facilitate targeting the stan-

dard deviation of output growth, and the autocorrelation of consumption and output

growth rates. Notably, the adjustment costs for labor are quite large. I introduce

this adjustment cost, to target the autocorrelation of consumption. It is crucial in

the absence of consumption smoothing in a risk neutral setup.

The standard deviation of the labor efficiency (noise) shock σl, governs the pos-

terior uncertainty a manager has regarding today’s level of productivity growth gt.

Consequentially, this parameter governs the amplification of the conditional volatility

of real quantities in bad times. Naturally, a choice of noise close to zero yields no

amplification at all, as we are back in a perfect information case. I pick σl = 0.265,

to target the increase in consumption’s conditional volatility in bad times.
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I set the (gross) growth of aggregate productivity g0 to 1.005, ensuring that annual

consumption growth is approximately 2%. In a risk neutral setup, the discount rate

parameter β must satisfy βg0 < 1, to ensure that the detrended value function is a

contraction. I therefore pick a value of β = 0.994. This implies an annual real risk

free rate of slightly above 2%.

As wages are exogenously specified, I set the (detrended) wage for labor as a

numéraire, with w = 1. Lastly, the idiosyncratic demand shock parameters σz = 0.01

and ρz = 0.9 are set to approximately match the correlation between output and

investment-rate dispersions with the business cycle (that is, with TFP growth).

5.2 Model Numerical Solution and Implications for Unconditional Ag-

gregates

I solve the model using a second order perturbation method, as in Judd (1998)9.

To solve the model, I detrend the growing model variables by the lagged value of

the stochastic productivity trend. Details regarding detrending the firm problem,

are provided in the Appendix. I simulate the model at the quarterly frequency for

100,000 quarters, after truncation to remove dependence on initial values. I simulate

a cross section of 10,000 firms, to ensure that all idiosyncratic shocks are diversified

at the aggregate level. Aggregate model-implied level time-series, of capital, labor,

output, consumption and investment, are obtained by averaging the respective firm-

level quantities over all firms.

To facilitate the comparison between the benchmark model (with Bayesian learn-

ing) and the data, I also solve a version of the model without any learning. This

no-learning model specification is identical to the learning model. Namely, the pro-

duction function including the labor efficiency shock, the evolution of capital, and the

adjustment costs are the same, except for the fact that the firm knows every period

the true value of gt (zero prior and posterior uncertainty). The calibration used for

the no-learning model is identical to that used for the benchmark learning model, and

is specified in Table 1.

I report the model-implied unconditional moments of aggregate consumption, out-

put, labor, and capital log-growth rates and the log aggregate investment-to-capital

rate, versus their empirical counterparts in Table 2. The simulated quarterly model-

9Solving the model using third-order perturbation method yields similar results.
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implied time-series is time-aggregated to form annual observations, to be compared

with the annual data.

For the most part, the moments implied from the model with learning, are close

to or match their empirical estimates. The growth rates of aggregate consumption,

capital, and output are all roughly 2% in the model and in the data. Log investment-

rate is slightly higher in the model than in the data (-2.31 in the model versus -2.91

in the data). The model-implied volatilities align generally well with the data. The

volatility of output growth is about 3% in the model and in the data. The volatilities

of labor growth and investment-rate and close to their empirical counterparts. Con-

sumption growth has excess volatility in the model (3.1% and 1.4% in the model and

data, respectively). However, in the long same of 1930-2012, consumption growth’s

volatility is 2.2%, and the upper-bound of its volatility 90%-confidence interval of

2.6%, which is much closer to the model. Capital growth is less volatile in the model

than the data, due to the effect of adjustment costs, that compensate for the lack of

consumption smoothing.

The learning model implied autocorrelations of consumption, output and labor

growth fall into the data 90%-confidence intervals. Labor growth is much more per-

sistent in the model at the annual frequency, yet at the quarterly frequency this

problem vanishes. In the model, the quarterly auto-correlation of labor is 0.11, and

in the data the quarterly auto-correlation of labor growth is 0.23 with a confidence

interval of [0.048, 0.419]. Likewise, capital growth is overly persistent in the model.

However, the upper-bound of the 90%-confidence interval for quarterly capital growth

autocorrelation is 0.75, which is closer to the model quarterly autocorrelation of 0.94.

In all, the model is capable of producing reasonable unconditional aggregate moments,

in-light of the absense of risk-aversion.

While I do not target any moment implied by the no-learning model (this model

bears the same calibration as the learning model for comparative reasons), the no-

learning model produces similar moments to the learning model. The volatilities in the

no-learning model are slightly higher. This makes intuitive sense: in the no-learning

model, all firms share the same belief on the state of the economy, or aggregate TFP

growth. As “beliefs” in the no-learning model are perfectly correlated, this increases

the correlation between firms policies, in-comparison to the learning model in which

beliefs are heterogeneous. As a result of a higher unconditional correlation between

firms, aggregate volatilities are higher.
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6 Results

This section illustrates the implications of the learning model for aggregate and cross-

sectional volatilities, in a risk-neutral environment. In section 6.1, I show how the

learning model is capable of amplifying fluctuations in the conditional volatility of

aggregate growth rates, while the no-learning model, produces minute changes in

the conditional volatility, which is the main result of this study. Sections 6.2 and

6.3 are dedicated to decompose the aggregate volatility movements into firm-level

volatility and cross-sectional correlation fluctuations. I demonstrate the importance

of the endogenous, time-varying correlation channel to produce endogenous shifts in

aggregate volatility. Next, section 6.4 provides evidence that it is the combination

of Bayesian learning, along with asymmetric information, that is responsible for the

countercyclical correlation between the growth rates of firms, in-line with the model’s

economic narrative. Section 6.5 explains how non-linearities in the measurement of

volatility, can produce small fluctuations in the measured conditional volatility under

a homoscedastic environment. This section illustrates that the no-learning model is

isomorphic to a constant conditional volatility world. Section 6.6 demonstrates that

dispersion in the learning model is by large countercyclical, in spite of an increase in

the conditional correlations in bad times, and reconciles the two. Finally, section 6.7

deals with the robustness of the results.

6.1 Implications of Learning for Aggregate Conditional Volatility

The learning model is capable of generating fluctuations in the conditional volatility

of aggregates, that are much larger than those produced by a no-learning model, and

are also comparably close to the magnitude of fluctuations observed in the data. Table

3 demonstrates this claim. The table shows by how much the conditional volatility of

macroeconomic variables of interest, increases or decreases, in bad times compared to

normal periods. Likewise, the table shows the fluctuations in the conditional volatility

in good times compared to normal ones. Bad, normal and good times refer to periods

is which the aggregate TFP growth is between its 0-25th, 25-75-th, and 75-100th

percentiles, respectively. The table presents the volatility fluctuations induced by

quarterly data from the learning benchmark model, as well as from a no-learning

model, and empirical estimates of the fluctuations in the data.

In the data, the conditional volatility of real macroeconomic variables is clearly

counter-cyclical. For all variables, including output and consumption growth, the
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volatility is higher (lower) in bad (good) times, in comparison to normal times. For all

variables, except for the investment rate, the rise (drop) in the conditional volatility

in bad (good) times is significantly above (below) zero, as can be seen from the

confidence intervals. The magnitude of the positive (and significant) fluctuations

in volatility in bad times ranges from an increase of 30% to 56%. Specifically, the

estimated increase in output’s (GDP) conditional volatility in bad times is about

30%. This figure aligns well with Bloom (2013), who finds that quarterly GDP and

industrial production growth, has about 35% more conditional volatility in NBER

recessions.

In the learning model, almost all of the oscillations in the conditional volatility in

good and bad times for the variables of interest, fall into the empirical 90% confidence

intervals. For some variables the fluctuations induced by the model are very close to

the data point-estimates. For example, capital’s growth volatility rises in bad times

by 57% and 56% in the model and in the data, while it drops in good times by 41%

and 47% in the model and the data. Consumption growth’s volatility increases in

bad times by 29% in the model versus 32% in the data, and it falls in good times by

20% and 14% in the model and the data, respectively. For the investment rate, the

model tends to overstate the fluctuations in volatility, compared to the data. In the

learning model, the magnitude of the positive fluctuations in volatility in bad times

ranges from an increase of 29% to 58% 10.

By contrast, the no-learning model-implied volatility oscillations are muted, not

only in comparison to the learning model, but also in comparison to the data. The

positive fluctuations in volatility during bad times range from an increase of 1.8% to

4.3%, outside the data confidence intervals. Similarly, the fluctuations in good times

are mixed in sign, and range from -1.5% to 0.76%.

Two questions arise. First, and most importantly, what triggers the large volatility

fluctuations in the learning model? This questions is addressed in the following

sections 6.2 - 6.4. Second, why are the volatility fluctuations in the no-learning

model very small, and yet, non-zero? I provide an answer in section 6.5.

10The learning model is also capable of generating fluctuations in the conditional volatility of aggregate
labor growth. For example, the conditional volatility of aggregate labor growth rises by 63% in the model,
and by 75% in the data.
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6.2 Implications of Learning for Average Between-Firm Conditional Co-

variation

The fluctuations in the conditional volatility of aggregates in the model, reported in

Table 3, capture movements in the average conditional covariation between firms.

To see this, notice that if X is an aggregate variable, xi is a firm level (single-firm

indexed by i) variable, and N is the number of firms in the cross-section, then:

Vt(Xt+1) = Vt(
1

N

N∑
i=1

xi,t+1)

=
1

N2

(
N∑
i=1

Vt(xi,t+1) + 2
N∑
i=1

N∑
j=i+1

COVt(xi,t+1, xj,t+1).

)
(6.1)

Denote the average conditional one-firm volatility as V one−firm
t (xi,t+1) = σ2

ii,t (all firms

are ex-ante identical), and the average conditional covariation as COVt(xi,t+1, xj,t+1) =

σij,t. Then, the expression in (6.1) can be written as:

Vt(Xt+1) =
1

N2

(
Nσii,t

2 +N(N − 1)σij,t
)
. (6.2)

With a mass of atomistic firms, N → ∞ and Vt(Xt+1) → σij,t
11. That is, the

aggregate volatility equals the average between-firm covariation. This claim therefore

implies that the aggregate volatility oscillations in Table 3, are driven by fluctuations

in the conditional covariation.

While this claim is straightforward algebraically, I provide direct evidence that

this claim holds in the model. I construct a measure of the changes in the (aver-

age) conditional pairwise covariation between firms in the model (and data). The

methodology of constructing the pairwise covariation is described in section 4.2.

Table 4 shows by how much the conditional between-firm pairwise covariation of

variables of interest, increases or decreases, in bad times, and in good times, compared

11 Equation (6.1) is an approximation when the aggregate variable X is a growth rate, not a level. The
exact decomposition for growth rates is as follows:

Vt(∆Xt+1) = Vt(

N∑
i=1

wi,t∆xi,t+1),

where wi,t =
xi,t∑N
j=1 xj,t

. Hence, the aggregate volatility of a growth rate converges to the average “value-

weighted” covariation between-firms. When firms are atomistic, this equals approximately to the “equal-
weighted” covariation between-firms.
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to normal periods. As in the previous section, bad, normal and good times refer to

periods is which the aggregate TFP growth is between its 0-25th, 25-75-th, and 75-

100th percentiles, respectively. The table presents the covariation fluctuations from

the learning model, and empirical counterparts.

In the model, the changes in the covariation as reported in Table 4, coincide with

the fluctuations in aggregate volatility reported in Table 3. All oscillations are identi-

cal, up to the units digit. Notice that the fluctuations in Table 3 are based on aggre-

gate time-series only, while fluctuations in Table 4 are computed using firm-level data

only. This exercise demonstrates that the methodology used in this study to measure

the unobserved ex-ante conditional volatility and covariation satisfy equation 6.2. In

unreported results, I verify that the conditional aggregate volatility fluctuations in

the no-learning model, are also identical to the oscillations in covariations.

In the data, the fluctuations in the conditional covariations are countercyclical:

covariation rises in bad times, and drops in good times. Perhaps surprisingly, the

fluctuations in the empirical pairwise covariations, are very close in magnitude to

the fluctuations in the empirical aggregate volatility. For example, the conditional

volatility of aggregate output in the data rises by 29.8% in bad times, while the

increase in the average covariation between firms’ outputs in those periods is 28.9%.

Similarly, the empirical conditional volatility of aggregate capital growth, and the

conditional covariation of capital growth rates, rise by 56.2% and 55.8%, respectively.

Given that in the data some firms are non-atomistic, as illustrated in Gabaix (2011),

the similarity of the figures is non-trivial.

What causes the conditional covariation to rise in bad times, and drop in good

times? The next section provides an answer.

6.3 Aggregate Volatility Decomposition: Implications for Average Con-

ditional Correlations

Sections 6.1 and 6.2 show that the conditional aggregate volatility is countercyclical

in the learning model, due to an increase in the conditional covariation between

firms in bad times. In this section, the aggregate volatility (or average covariation)

is decomposed into firm-level volatility and average between-firm correlation. This

decomposition yields that:

A. In the model without learning, the fluctuations in the conditional volatility of

aggregates (or alternatively, in the conditional between-firm covariation), are
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purely due to small changes in the conditional one-firm volatility. The average

correlation between firms is fixed.

B. In the model with learning, the fluctuations in the conditional volatility of aggre-

gates (or alternatively, in the conditional between-firm covariation), are largely

due to shifts in the conditional correlation between firms, that rises in bad times.

Let xi be a firm-level variable. Denote, as before, the average conditional one-firm

volatility as V one−firm
t (xi,t+1), and the average conditional correlation between firms

as CORRt(xi,t+1, xj,t+1). Using equation (6.2), the volatility of the aggregate variable

X can be decomposed as:

V agg
t (Xt+1) ≈ COVt(xi,t+1, xj,t+1) = V one−firm

t (xi,t+1) · CORRt(xi,t+1, xj,t+1).

As a consequence, the oscillation in aggregate volatility between bad and normal

times is equal to the fluctuation in firm level volatility multiplied by the fluctuation

in the average between-firm correlation, between bad and normal times:

Vt(·|Bad)

Vt(·|Normal)
≈ V one−firm

t (·|Bad)

V one−firm
t (·|Normal)

· CORRt(·|Bad)

CORRt(·|Normal)
. (6.3)

A similar decomposition can be made for good versus normal period oscillations.

Thus, if the fluctuations in the aggregate volatility are very close to those in the one-

firm volatility, there are no fluctuations in the conditional correlation. However, if

the fluctuations in aggregate volatility differ from the one-firm volatility movements,

this indicates shifts in the conditional correlation between firms.

Tables 5 and 6 respectively show by how much the average one-firm conditional

volatility, and the average between-firm correlation of variables of interest, fluctuate

in bad times and in good times compared to normal periods. As before, bad, normal

and good times refer to periods is which the aggregate TFP growth is between its 0-

25th, 25-75-th, and 75-100th percentiles, respectively. The tables present oscillations

induced by model-implied quarterly data from the learning benchmark model, and

from a no-learning model.

Comparing the figures of Table 3 and Table 5 in the no-learning case, reveals that

the fluctuations in the aggregate and one-firm volatility are small and roughly the

same. As a result, the fluctuations in the average conditional between-firm correla-

tions are minuscule, as illustrated in Table 6.
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In contrast, comparing Tables 3, 5 and 6 in the learning case, demonstrates that

the one-firm volatility fluctuations are amplified by a counter-cyclical movement in

the conditional correlation between firms. The conditional correlation between firms’

outputs rises by 32% in bad times, and drops by 29% in good times. For invest-

ment rate, the conditional correlation increases (drops) by 27.5% (28.8%) in bad

(good) times. In fact, for output growth, about 90% of the increase in the conditional

aggregate volatility in bad times is attributed to an increase in the conditional corre-

lations. For capital growth and the investment rate, the oscillation in the conditional

correlation explains about 80% of the contemporaneous increase in the aggregate

volatility. These numbers are comparable to the findings of Veldkamp and Wolfers

(2007), who decompose (unconditional) aggregate volatility into sector specific volatil-

ity, and comovement of sectors, and attribute about 80% of aggregate volatility to

the comovement term.

6.4 The Role of Bayesian Learning and Asymmetric Information for Cor-

relation Fluctuations

The fluctuations in the conditional correlations between firms, that drive the condi-

tional aggregate volatility in the learning model, are a result of the Bayesian learning

and Asymmetric information: in the bad states, firms put more weight on public

(common) information, and less on private (idiosyncratic) information. An increase

in the correlation between the posterior belief of firms, triggers policies that comove

more, and making aggregate growth rates more volatile. The Tables in this section

provide evidence in support of these claims.

First, I solve a modified learning model, having the same calibration as the bench-

mark learning model, but in which the (noise) shocks to labor efficiency, εi,l,t are

aggregate shocks. In other words, the shocks εi,l,t are i.i.d over time, but the same

over all firms, and hence can be denoted by omitting the i index as εl,t. Now, privately

observed signals si,t, obtained from firms’ output, all have the same ex-port bias (per

unit of labor), driven by the aggregate shock εl,t. Thus, in this model, both the lagged

value of productivity growth gt−1, and the signal si,t obtained from firms’ output, are

driven by public-common information shocks. Importantly, there is still learning: the

ex-ante and ex-post uncertainties about gt are positive, and the weights on the pri-

vate and public signals are still time-varying with the amount of rented labor. Yet,

as no signal is idiosyncratic, shifts in the weights placed on the public and the private

27



signals should not trigger significant changes in the average correlation between firms’

posterior (or policies), as there are no effective informational asymmetries.

The results of the no-informational asymmetries model, for aggregate volatility

and average correlation fluctuations in bad and good times compared to normal peri-

ods, are shown in Table 7. As conjectured, the correlation fluctuations are all close to

zero. As a result, the fluctuations in aggregate volatility are small, and all range be-

tween 0.3% to 0.6% in absolute value. Notice that the speed of learning in this model

is procyclical, in a similar fashion to the model of Van Nieuwerburgh and Veldkamp

(2006), yet without asymmetric information, the model is not capable of producing

significant fluctuations in volatility.

Second, suppose the learning model is altered such that there are both public

signals (gt−1) and private signals (si,t, driven by idiosyncratic shocks), but learning is

not Bayesian. That is, I fix the gains (the weights) on the public and private signals

at their steady state values. The posterior mean µi,g,t and variance Vi,g,t on gt satisfy:

µi,g,t = wpublic((1− ρg)g0 + ρggt−1) + wprivate (si,t) ,

Vi,g,t =
{
σ−2g + l2ssσ

−2
l

}−1
,

where:

wpublic =
σ−2g

σ−2g + l2ssσ
−2
l

, wprivate = 1− wpublic,

and where lss is the steady-state level of labor (ex-ante, it is identical for all firms).

In this model, there is still learning (posterior uncertainty is positive), and there is

still asymmetric information, hence belief heterogeneity. However, since the weight

on public common information is fixed, in bad times firms do not place, by construc-

tion, more weight on common information. Consequentially, the correlation between

firms should not fluctuate. Table 8 demonstrates that this is indeed the case. The

correlation oscillations between good and bad times versus normal periods are mi-

nuscule, and thus, aggregate volatility fluctuations are small. The fluctuations in the

conditional aggregate volatility are quite close to the no-learning case, as reported in

Table 3. For instance, aggregate output volatility increases in bad times by 4.4% and

4.3% in the Non-Bayesian learning and No-learning models, respectively, while the

volatility drops by 1.5% and 2.1% in good times in these two models, respectively.
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Importantly, the oscillations in aggregate volatility in the No-Information Asym-

metry model or in the Non-Bayesian learning models, should not coincide precisely

with the no-learning model results: in both cases there is still some posterior uncer-

tainty that can deviate the results from the exact full-information case. These two

alternated learning model illustrate the importance of two separate model ingredients:

(1) Bayesian leaning, with time varying gains, and (2) Informational asymmetry.

Next, I solve the benchmark learning model (with Bayesian learning and Asym-

metric information), but calibrated with different standard deviation for the noise

labor efficiency shock (changing σl). All other model parameters are calibrated as

in the benchmark calibration outlined in Table 1. Panel A of Table 9 presents the

results for four noise levels: σl ∈ {0.3, 0.265 “benchmark-level”, 0.2, 0}. Intuitively,

the less noise (smaller σl), the closer the model is to the no-learning case, and the am-

plification effect on aggregate volatility induced by average correlation fluctuations

become smaller. Aggregate volatility and average correlation fluctuations, in good

and bad times, monotonically decrease in absolute value with the noise level. In the

case where σl = 0, the private signal is perfectly revealing of the fundamental. As

a consequence, the results for the learning and no-learning models coincide, despite

different model first-order-conditions in the two cases, as shown in Panel B of Table

9.

6.5 Volatility Fluctuations in the No-Learning Model: Falsification Tests

Table 3 shows that the oscillations in the conditional volatility of aggregates between

good and bad states, in the no-learning model are very small, yet non-zero. This

section demonstrates that the small changes in the aggregate conditional volatility

in the no-learning model, are a result of some non-linearities in the econometric

construction of the conditional volatility, mainly the usage log-growth rates, and the

usage of squared residuals in realized-volatility construction. The conclusion is that

the no-learning model results do not differ from results that one would expect to find

in a homoscedastic world.

It is hard to isolate a single source of non-linearity that generates small fluctua-

tions in the aggregate volatility in a no-learning environment. To deal with this issue,

I use a “falsification” test. I verify that constant conditional volatility processes, hav-

ing the same unconditional moments as model-implied aggregate variables, yield the

same minuscule fluctuations in the conditional volatility, when using the econometric

methodology for the construction of volatility, as described in section 4.2.
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Specifically, let log(Xt) be some log aggregate time-series induced from the model.

I calibrate a process X̃t of the form:

X̃t = (1− ρx)x0 + ρxX̃t−1 + βg(gt−1 − g0) + βg,2(gt−1 − g0)2 + σxεg,t + σx,2(ε
2
g,t − 1),

where gt−1 is the lagged value of productivity growth, and εg,t are the shocks to pro-

ductivity used in the model simulation. The process X̃t is calibrated such that the

process has the same mean, same standard deviation, same skewness, same correla-

tion with TFP growth, and same correlation with TFP growth squared, as the orig-

inal model-implied exponentiated (level) time-series Xt process12. Then, I construct

the conditional volatility fluctuations for log(X̃t) time-series, under the econometric

methodology of section 4.2, while including the lag of log(X̃) as a predictor.

Notice that: (1) the process X̃t has, by construction, constant conditional volatil-

ity; (2) the shocks to X̃ depend on the shocks to the aggregate TFP only, and are

taken from the model simulation (the only aggregate shock in the model is εg); (3)

the process can depend on the state g in a linear, and non-linear fashion.

The results for aggregate volatility fluctuations, against the no-learning model, are

reported in Panel A of Table 10. Two main features arise. First, the fluctuations in

the volatility for the no-learning model time-series and for the matched homoscedas-

tic processes are quite similar. Second, the fluctuations reported for the matched

homoscedastic processes are small yet non-zero. Non-zero results can arise as I ap-

ply the log function on the Gaussian process X̃, and as the residuals of log(X̃) are

squared in the volatility construction. Both of these are non-linear operations, that

introduce some small skewness, which is manifested in small volatility movements.

In unreported results, I notice that when I do not use log-growth rates, or use ab-

solute residuals (as opposed to squared residuals) in the volatility construction, the

oscillations in the conditional volatility are even smaller.

Next, I repeat the same “falsification” test for the learning model. For each

log aggregate time-series log(Xt) given by the learning model, I calibrate a matched

process X̃t, that has the same unconditional moments as Xt, but constant conditional

volatility. Panel B of Table 10 shows that in this case, the fluctuations in the volatility

of log(X̃t) are tiny in comparison to the learning model-implied volatility changes.

This fact provides further evidence that the learning model results are not spurious.

Finally, I consider another source of non-linearity that stems from within the

model: the decreasing returns to scale technology (ν < 1). Intuitively, a higher ν

12If log(Xt) is a log aggregate growth time-series, Xt is a gross-growth time-series.
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implies a closer to linear production function, which then attenuates the non-linearity

and the fluctuations in the conditional volatility, both in a learning and a no-learning

environments. In unreported results, I find that increasing (decreasing) ν reduces

(amplifies) the reported conditional volatility movements.

6.6 Implications for Cross-Sectional Dispersion

The volatility implications discussed in the previous sections referred to the condi-

tional volatility, which is the predictable variation of future shocks. Another concept

of volatility is the cross-sectional variance, or dispersion. This section shows that

dispersion in the model is counter-cyclical, in spite of an increase aggregate volatility

and between-firm correlations. While ostensibly, an increase in dispersion seems to

contradict a rise in expected correlation between firms, I reconcile the two in the

data. When the average between-firm covariation increases more than dispersion

does, correlations increase too, as is also the case empirically.

It is a well-known established fact, that the dispersion of real economic outcomes,

such as output growth and earnings growth, is countercyclical (see among others

Döpke et al. (2005), Bachmann and Bayer (2013), Bloom et al. (2012), and Bachmann

and Bayer (2014)). There are a few exceptions in the data. Recently, the work

of Bachmann and Bayer (2014) showed that the dispersion of investment rate is

procyclical.

I construct a time-series of dispersion for log output and capital growth, and

investment-rate in the model using the methodology detailed in section 4.2. To mea-

sure the amount of cyclicality of dispersions, I correlate each dispersion time-series

with the business-cycle, namely, productivity growth. A negative correlation indi-

cated counter-cyclical dispersion. The results for the learning and for the no-learning

models, along with empirical counterparts are reported in table 11.

Empirically, output growth and investment-rate dispersions exhibit a small amount

of countercyclicality (their dispersion correlates with productivity by -0.03 and -0.05,

respectively). Capital growth dispersion is procyclical, as this is consistent with the

finding of Bachmann and Bayer (2014).

In the learning model, all real growth rates exhibit almost the same amount of

slight countercyclicality. The correlation of investment-rate dispersion with TFP

growth is -0.04 in the model and in the data. Output growth’s dispersion is slightly

more countercyclical in the model than in the data.
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The evidence presented for the countercyclicality of dispersion, coincides with the

fluctuations in the one-firm volatility in the model. Dispersion, as discussed below,

is a measure of the idiosyncratic one-firm volatility (in the limit, and under certain

assumptions, the two are the same). Since one-firm volatility in the learning model

rises in bad times, and drops in good times, (see Table 5) it explains the model-implied

dispersion behavior.

The claim that the between-firm correlations rise in bad times, seems to be, at

first glance, at odds with a simultaneous increase in cross-sectional dispersion. The

two can be reconciled.

Let {xi,t}i be a cross-section of some variable x time-series. Denote by {εi,x,t}i
the cross-section of demeaned times-series of x, or equivalently, the shocks to xi. In

the model, the average predictable correlation of {εi,x,t+1}i at time t increases in bad

periods. Does this contradict a greater cross-sectional dispersion?

To put some structure into the answer, suppose further that one can find some

factor structure for the demeaned (shocks) time-series. In other words, assume:

εi,x,t = βiFt + ei,t,

where ei,t and ej,t are independent for i 6= j. Assume that V ARt(ei,t+1) = σ2
e,t ∀i,

and that V ARt(Ft+1) = σ2
F,t. Here, for simplicity, I assume a single common-factor,

Ft, in explaining the residuals of x.

One can write the conditional correlation between the innovations of firms i and

j, as follows:

CORRt(εi,t+1, εj,t+1) =
βiβjV ARt(Ft+1)√

β2
i V ARt(Ft+1) + V ARt(ei,t+1)

√
β2
jV ARt(Ft+1) + V ARt(ej,t+1)

=
1√

1 +
σ2
e,t

β2
i σ

2
F,t

1√
1 +

σ2
e,t

β2
j σ

2
F,t

As an approximation (or by ignoring β heterogeneity, and denoting the average β

as β), the average pairwise correlation can be expressed as:
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CORRt(εi,t+1, εj,t+1) =
1

1 +
σ2
e,t

β
2
σ2
F,t

,

=
1

1 +
σ2
e,t

COVt(εi,t+1,εj,t+1)

.

Using a result from Garcia, Mantilla-Garcia, and Martellini (2011), the dispersion

of the residuals DISP (εx,t) = V ARn(εi,x,t), is a consistent measure of the idiosyn-

cratic volatility σ2
e,t = V ARt(ei,t+1), assuming that a factor structure that satisfies

the standard arbitrage pricing-theory (APT) assumptions exists. The dispersion pro-

vides a consistent measure of idiosyncratic volatility, without a need to know the

actual underlying factor structure.

Suppose that dispersion rises in recessions. The above decomposition reveals

that if the average pairwise between-firm covariation, COVt, which equals to the

variation of the underlying factors, (β
2
σ2
F,t), increases more than residual-dispersion,

(DISP (εx,t) = σ2
e,t) does in bad times, the average correlation increases too in bad

times.

The last claim holds in the data, as shown in Table 12. The rise in average

covariation in bad times, ranges between 19% to 55%, while dispersion rises by no

more than 26%. For all variables, dispersion’s increase is always less than the point

estimate increase of covariation. Moreover, dispersion even drops in bad times for

some variables.

6.7 Robustness

The main result of this study is the ability of the learning model to yield oscillations

in the conditional aggregate volatility that are comparably close to the magnitude of

volatility fluctuations in the data, and are of a much larger scale than those induced

from a no-learning model. I show in this section that this main result is robust to

altering some of the benchmark implementation choices.

Throughout the previous sections, I defined the business cycle (namely, good,

normal, and bad times) using the TFP growth variable percentiles. I consider other

economic outcomes (that vary procyclically) for the business-cycle definition. Table

13 reports the aggregate volatility fluctuations, for the learning model, the no-learning
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model, and empirically, when bad, normal and good times are defined as the 0-25th,

25-75th, and 75-100th percentiles of aggregate output growth. Both in the learning

model and empirically, the implied fluctuations in the conditional volatility are quite

close to the benchmark result of Table 3. The magnitude of the positive (nega-

tive) fluctuations in the conditional volatility in bad (good) times tend to be larger

(smaller) in absolute value when output growth is used to define the cycle, compared

to TFP growth. For the no-learning model, the volatility fluctuations are still far less

pronounced in comparison to the learning model.

Another modification to the definition of good and bad periods are the percentile

breakpoints. In Table 14, I still define the business-cycle using TFP growth, but I

use more extreme definitions for good and bad times. Good (bad) times, are periods

in which TFP growth is between its 90-100th (0-10th) percentiles. Normal times, are

periods in which TFP lies between the 10-90th percentiles. The Table shows that, as

expected, this modification amplifies, in absolute terms, the changes in the conditional

volatility both in the model and in the data. The no-learning model results are largely

unchanged. Most of the learning model-implied volatility oscillations still fall into the

empirical 90%-confidence intervals.

Lastly, the results are also robust to the predictors used to demean aggregate and

firm-level times series, and obtain the ex-ante volatility time-series. In the benchmark

specification, I use a log-linear set of predictors Z. I show in Table 15, that when the

squared-values of the variables in Z are also added as additional predictors, the model-

implied results are almost identical. In the data, adding the non-linear predictors

tend to increase the volatility fluctuations in bad times. Empirically, it also causes

volatility to increase by a small amount in good times (though volatility in general

is still counter-cyclical, not U-shaped). In unreported results, I verify that no-single

predictor in the set of predictors Z is responsible for producing the observed behavior,

by dropping a different single predictor each time, and confirming that there are no

significant changes in the results.

7 Conclusion

The volatility of aggregate fundamentals, such as output and consumption growth, is

time-varying and increases in recessions. Recent work in macroeconomics and finance

has shown that this volatility is important for recession duration and asset-pricing: it

inhibits investment and recovery, and depresses assets’ valuation-ratios. Traditional
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models that examine the impact of volatility on the real and financial economy treat

aggregate volatility as an exogenous object. This paper attempts to fill the gap in our

understanding of macroeconomic volatility, by proposing a theory of how aggregate

volatility arises endogenously in a decentralized economy. The theory suggests that

the correlation structure between firms is an important source of macro volatility.

When firms do not observe the state of the economy, they learn about it from public

information, whose precision is constant over time, and from private idiosyncratic

information - their own output, that become more noisy in recessions as firms scale

down and produce less information. Consequentially, the correlation in the beliefs of

firms about the state of the economy rises in recessions, as firms scale down and put

more weight on public information. As a result, the policies of firms become more

correlated, contributing to a rise in aggregate volatility.

The study produces some important quantitative results. In the learning model,

the conditional volatility of aggregate output rises when TFP growth is low (bad

times) by 43%, and it drops when TFP growth is high (good times) by 32%. These

numbers fall into the 90%-confidence intervals for volatility fluctuations in the data.

Likewise, aggregate consumption’s volatility increases by 30% in bad times, in the

model and also empirically. The main economic force behind these fluctuations are

endogenous shifts in the average between-firm correlations. The average correlation

between firms’ outputs and investment-rates rises (drops) by about 30%, in abso-

lute value, in bad (good) times. Consquentially, about 80% of the increase in the

conditional aggregate volatility of total output growth, and other macro-quantities,

during slowdowns is attributed to an increase in the conditional correlations. Without

Bayesian learning, or when all information is symmetric between firms, the oscilla-

tions in the correlations over time are minute, and are therefore translated to very

small fluctuations in the conditional volatility of aggregates.
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A Appendix

To detrend the firm problem in 3.4, I divide the following quantities by the lagged trend level:

k̃i,t =
ki,t
Gt−1

; Ĩi,t =
Ii,t
Gt−1

; Φ̃i,t =
Φi,t
Gt−1

; Ṽt =
Vt
Gt−1

.

This allows re-writing the firm problem in a stationary form, as follows:

Ṽ (k̃i,t, li,t, gt−1, si,t, zi,t) = maxk̃t+1,lt+1
g1−α
t−1 zi,tk̃

α
i,t(si,tli,t)

ν−α − w · li,t − Ĩi,t
−Φ̃L(li,t, li,t+1)

+βgt−1E[Ṽ (ki,t+1, li,t+1, Gt, ĝt, si,t+1, zi,t+1)]

gt−1k̃i,t+1 = (1− δ)k̃i,t + Λ(
Ĩt

k̃t
)

Λ(i) =
α1

1− 1
ζ

(i)1− 1
ζ + α2

Φ̃L(li,t, li,t+1) = gt−1
κ

2
(li,t+1 − li,t)2

Vi,g,t = [
1

σ2
g

+
l2i,t
σ2
l

]−1

µi,g,t = Vi,g,t[
1

σ2
g

((1− ρg)g0 + ρggt−1) +
l2i,t
σ2
l

(si,t)]

ĝt = µi,g,t +
√
Vi,g,tεi,µ,t

si,t+1 = [(1− ρg)g0 + ρg ĝt + σgεg,t+1] +
σl

li,t+1
εl,t+1

εi,µ,t = (gt − µi,g,t)/Vi,g,t ∼ N(0, 1) (A.1)
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Tables and Figures

Table 1: Benchmark Calibration

Parameter Symbol Value
Depreciation rate of capital δ 2%
Discount factor β 0.994
Aggregate Productivity:

Growth rate g0 1.005
Autocorrelation of aggregate productivity ρg 0.5
Standard deviation of shock σg 0.02

Idiosyncratic Demand Shock:
Mean of shock z0 1
Autocorrelation of idiosyncratic component ρg 0.9
Standard deviation of shock σz 0.01

Production:
Returns to scale ν 0.9
Elasticity of capital input α 0.22
Adjustment cost for capital ζ 1.2
Adjustment cost for labor κ 7
(Detrended) wage w 1
Standard deviation of labor efficiency shock σl 0.265

The Table presents the benchmark calibration of the learning model, at the quarterly frequency.
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