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1 Introduction

Perpetual futures contracts are financial derivatives that offer the same characteristics
as traditional futures contracts but without an expiration date. Like traditional futures,
perpetual futures allow traders to speculate at no cost on the price movements of an
underlying asset without actually holding it. The fact that the contract does not have
a fixed maturity date presents two related advantages. First, it implies that traders
can take positions for the duration of their choice without having to rollover from
maturing contracts to newly minted contracts and thus tremendously simplifies the
investment process. Second, and related, the fact that a single contract is traded on
each underlying fosters a higher liquidity which in turn facilitates price discovery.
At the time of writing, perpetual futures are particularly popular in cryptocurrency
markets (see Figure 1 for some data on BTC/USD futures) but we expect that they will
soon find traction in other asset classes.

In a well-functioning perpetual futures market, the contract’s price should closely
track the spot price of the underlying. However, the demand and supply dynamics at
play in the market imply that there can be temporary deviations between the futures
price and the spot. These deviations may lead to a premium or positive basis when
the futures prices price is higher than the spot, or to a discount when the futures price
is lower than the spot. In traditional futures, the existence of a finite maturity forces
the futures price to converge to the spot price at the expiry date, and this terminal
contraint effectively limits the size of the basis. In a perpetual futures contract without
maturity the anchoring of the futures price to the spot is instead achieved through
periodic funding payments from the long to the short. These funding payments are
computed periodically (e.g., every 8h on most cryptocurrency platforms) as the sum
of a premium term that depends positively on the spread between the futures price and
the spot, and of an interest term that reflects the interest rate differential between the
base and quote currency.

The terms of a standard, or linear, perpetual futures contract include the underlying
asset (e.g., BTC/USD) representing the value of one unit of the base currency (BTC) in
units of the quote currency (USD), a contract size expressed in units of the base asset
(1BTC), and a margin and settlement currency (USD) in which profits and losses are
realized. Cryptocurrency trading platforms have introduced multiple variations of the
linear contracts. The most important such variation is the inverse contract where the
base currency itself (BTC) is used as the margin and settlement asset and the contract
size is expressed in units of the quote currency (10’000USD). This innovative product
allows to speculate on the exchange rate between a crypto and a fiat currency without
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FIGURE 1: Perpetual Bitcoin futures.

The bottom panels show the evolution of the Bitcoin price and the aggregated open
interest in perpetual Bitcoin futures from May 2021 to October 2023. The top panel
gives the repartition of open interest across the main trading platforms on October 8,
2023. All data is downloaded from coinalyze.com.

the need to actually hold units of that fiat currency and was thus widely adapted by
trading platforms that typically cannot accept deposits in fiat currencies since they do
not qualify as banks under the existing regulation. Another important variation is the
perpetual quanto futures that uses a third currency (ETH), different from the quote and
base currencies, for margining and settlement. Perpetual futures contracts where the
target spot price is a function of the spot price (rather than the spot price itself) have
been proposed in ? under the somehow misleading name of everlasting options but,
outside of a few power contracts, they have found limited traction so far.

In this paper, we derive the prices of different perpetual futures contracts under the
absence of arbitrage. We study discrete-time and continuous-time formulations. We
identify funding specifications for the linear and inverse contracts that guarantee that
the perpetual future price coincides with the spot so that the basis is constantly equal
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to zero. In both cases, the required interest term is an easily implementable function
of the interest rates in the two currencies. With the assumption of constant funding
parameters and interest rates, we derive explicit model-free expressions for the linear
and inverse futures prices. We show that, in general, the perpetual future price is the
discounted expected value of the future underlying asset’s price at a random time that
reflects the funding specification. In the continuous-time case, we provide a general
expression for the quanto futures price and use it to obtain a closed-form solution for
the required convexity correction in a Black-Scholes setting. Finally, we derive general
pricing formulas for everlasting options that we illustrate with closed form solutions
for calls and puts in a Black-Scholes setting.

The first case of futures contracts without maturity can be found at the Chinese
Gold and Silver Exchange of Hong Kong who developed an undated futures market.
However, these contracts did not allow the futures price to fluctuate freely and would
instead be settled everyday against the spot price with an interest payment analog to
the funding payment. In essence, these undated contracts were automatically rolled
over one-day futures contracts, see ? for a discussion. Perpetual futures contracts
were formally introduced by ? who proposed the creation of perpetual claims on
economic indicators (such as real estate prices and/or corporate profits) where the
funding rate would depends on observable cash-flows such as rental rates. While the
focus of ? was on real economic indicators rather than cryptocurrencies, his paper
laid the groundwork for the subsequent development of perpetual futures. BitMEX is
credited with pioneering and popularizing perpetual contracts for cryptocurrencies.
In particular, that trading platform introduced inverse contracts in 2016. At the time of
writing, perpetual futures are listed on dozens of exchanges and constitute by far the
dominant derivatives instrument in that space. For example, of all the listed futures
contracts on Bitcoin traded during the first half of 2023, 75% of the 27B USD daily
average volume and 94% of the 8B USD daily average open interests can be attributed
to perpetual futures.

The literature on the theoretical pricing of perpetual futures contracts is very scarce.
? study a related but different problem in a no-arbitrage framework. They derive the
funding rate value such that the perpetual future price is explicitly given by a func-
tion of the spot price and the unobservable parameters of the prices process. This type
of contract is different from the perpetual future contracts actually traded in cryp-
tocurrency markets, and is not implemented by any exchange at the time of writing.
In a recent paper ? derive no-arbitrage prices and bounds for the perpetual futures
price, and perform an empirical study of the deviations between their theoretical price
and market observations. Their price bounds use a more restrictive definition of the
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funding rate and rely on a specification of cash flows that is incompatible with the
assumption that entering the contract is costless. To the best of our knowledge there is
currently no theoretical studies of inverse and quanto contracts. Despite the scarcity of
the theoretical literature there are several empirical studies of perpetual futures con-
tracts focusing on price discovery (?), cost of carry (??), and market structure (?).

The paper is split in two parts. In the first we consider a discrete-time formulation
of a market with two currencies and derive explicit expressions for linear and inverse
perpetual futures prices. In the second part we move to a continuous-time formulation
in which we derive expressions for linear, inverse, and quantos futures prices that we
compare with the recent results of ? and ?. Finally, we briefly consider everlasting
options and illustrate their pricing within a standard lognormal setting. The proofs of
all results are provided in the appendix.

Part I

Discrete-time

2 The underlying model

Time is discrete and indexed by t ∈ {0, 1, . . . }. Uncertainty in the economy is captured
by a probability space (Ω, F , P) that we equip with a filtration F = {Ft}t≥0. Unless
specified otherwise all stochastic processes to appear in what follows are implicitly
assumed to be adapted to F.

There are two currencies indexed by i ∈ {a, b}, for example the US Dollar and
Bitcoin. We denote by xt > 0 the b/a exchange rate at date t, that is the price in a of 1
unit of b. Investors can freely exchange currencies at this rate and are allowed to invest
in two locally risk free bonds: one denominated in units of a and the other in units of
b. The price of these assets satisfy

Bit+1 = (1 + rit) Bit, Bi0 = 1, i ∈ {a, b},

where rit > −1 is the Ft−measurable return on the i−denominated risk free asset
over the period from date t to date t + 1.

To ensure the absence of arbitrages between these two primitive assets, we assume
that there exists a probability Qa that is equivalent to P when restricted to Ft for any
fixed t ∈ N and such that the price of the b−riskless asset expressed in units of a and
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discounted at the a−risk free rate is a martingale under Qa:

EQa
t

[
Bbs
Bas

xs

]
=

Bbt
Bat

xt, ∀t ≤ s. (1)

Note that the choice of a as the reference currency is without loss. Indeed, using the
strictly positive Qa−martingale Bbt

Bat
xt
x0

as a density process shows that under the above
no-arbitrage assumption there exists a probability Qb that is equivalent to P when
restricted to Ft for any fixed t and such that

EQb
t

[
Bas

Bbs
x∗s

]
=

Bat

Bbt
x∗t , ∀t ≤ s, (2)

where x∗t ≡ 1/xt denote the a/b exchange rate. We will have the occasion to use both
of these currency-specific pricing measures in what follows.

3 Perpetual futures pricing

A perpetual (linear) futures contract provides exposure to one unit of currency b from
the point of view of an investor whose unit of account is a. Accordingly, the perpetual
futures price ft is quoted in units of currency a and all margining operations required
by the contract are carried out in that currency.

Entering a contract at date t is costless and, as in a classical futures contract, the
long receives at date t + 1 the one period variation

ft+1 − ft

in the futures price. If the futures contract had a finite maturity date, say T, then
this periodic cash flow and the condition that the futures price should equal the spot
at maturity are sufficient to uniquely pin down the futures price as the conditional
expectation

f T
t := EQa

t [xT] (3)

of the terminal spot price under the a−risk neutral probability Qa. Without a fixed
maturity one needs to introduce additional periodic funding payments to keep the
futures price anchored to the spot. The specification of the funding payment varies
across exchanges but generally consists in two predictable components: A premium
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part and an interest part. At date t + 1 the premium part is

κt ( ft − xt)

where the rate κt > 0 controls the intensity of the anchoring between the spot and the
futures price. Intuitively, if the futures price is high relative to the spot at date t then
the long will have to pay more at date t + 1. This in turn makes the long side less
attractive and should induce the futures price to move towards the spot. On the other
hand, the interest part of the periodic funding payment is given by

ιtxt

where the factor ιt is set by the exchange to reflect the possibly time varying interest
rate differential between the two currencies.

In accordance with these definitions the a−denominated cash flow at date t + 1
from holding a long position over the period from t to t + 1 is

( ft+1 − ft)− κt ( ft − xt)− ιtxt (4)

and, since entering a futures position is costsless, the absence of arbitrage between the
futures, spot, and financial markets requires that

EQa
t [( ft+1 − ft)− κt ( ft − xt)− ιtxt] = 0, ∀t ≥ 0.

Rearranging this equality gives

ft =
1

1 + κt
EQa

t [ ft+1] +

(
κt − ιt
1 + κt

)
xt

and iterating this relation forward reveals that

ft = EQa
t

[(
T−1

∏
τ=t

1
1 + κτ

)
fT +

T−1

∑
σ=t

(
σ

∏
τ=t

1
1 + κτ

)
(κσ − ισ) xσ

]
(5)

for all t ≤ T − 1. To pin down a unique solution to this recursive equation we require
that the futures price satisfies the transversality condition:

lim
T→∞

EQa
t

[(
T−1

∏
τ=t

1
1 + κτ

)
fT

]
= 0, ∀t ≥ 0. (6)
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Standard arguments then lead to the following results:

Proposition 1. Assume that

EQa

[
∞

∑
σ=0

(
σ

∏
τ=0

1
1 + κτ

)
|κσ − ισ| xσ

]
< ∞. (7)

Then the process

ft = EQa
t

[
∞

∑
σ=t

(
σ

∏
τ=t

1
1 + κτ

)
(κσ − ισ) xσ

]

is the unique solution to (3) that satisfies condition (3).

Corollary 1. If ι < κ and (ra, rb) are constants such that

1
1 + κ

(
1 + ra

1 + rb

)
< 1

then the perpetual futures price

ft =
κ − ι

1 + κ
EQa

t

[
∞

∑
σ=t

(
1

1 + κ

)σ−t
xσ

]
=

(κ − ι) (1 + rb)

rb − ra + κ (1 + rb)
xt

is increasing in ra as well as decreasing in rb and ι, and converges monotonically to the spot
price as the premium rate κ → ∞.

Next, we show that the interest factor ιt can be chosen by the exchange in such a
way that the perpetual futures price and the spot price coincide for any sufficiently
large premium rate κt . This result is important from the market design point of view
because it delivers a perfect anchoring of the futures price to the spot price through a
simple specification of the sole interest factor. It is also important from the financial
engineering point of view because if the contract is such that ft = xt then the perpetual
futures contract can be dynamically replicated trading in the two primitives assets
despite any potential market incompleteness.

Corollary 2. If the interest factor

ιt =
rat − rbt
1 + rbt

< κt
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then the perpetual futures price is equal to the spot price at all times. In this case, the one period
cash flow of a long position can be replicated by borrowing

mtxt =
xt

1 + rbt

units of a at rate rat and investing mt units of b at rate rbt.

In the standard case of a finite maturity contract the futures price is simply given
by the risk-neutral expectation of the terminal spot price under Qa as in (3). Our next
result shows that a similar representation holds for the perpetual futures price albeit
with a random maturity date whose distribution reflects the funding parameters of
the perpetual contract.

Proposition 2. Assume that (1) holds and that −1 < ιt < κt. Then the perpetual futures
price satisfies

ft = EQa
t

[(
θt−1

∏
τ=t

1
1 + ιτ

)
xθt

]

where θt ≥ t is a random time that is defined on an extension of the probability space and
distributed according to

Qa (θt = σ|F ) = 1{t≤σ}
κσ − ισ
1 + ισ

(
σ

∏
τ=t

1 + ιτ
1 + κτ

)
.

In particular, if the premium rate κ is constant and the interest factor ι ≡ 0 then the perpetual
futures price is simply given by

ft = EQa
t

[
∞

∑
n=0

κ (1 + κ)−(n+1) xt+n

]
= EQa

t
[
xt+η

]
where η is a geometrically distributed random time with mean 1/κ.

4 Inverse futures pricing

The inverse perpetual futures contract offers an exposure to the b/a exchange rate
and is quoted in units of currency a but, unlike the linear contract, its margined and
funded in currency b. This alternative form of futures contract is particularly well
suited to crypto-currency investors. Indeed, the fact that the contract operates entirely
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in the target currency, say Bitcoin or Ether, implies that it can be run entirely on chain
without ever having to own or transfer any units of fiat money.

The contract size is expressed in units of a and fixed to one. As a result, the
b−denominated cash flow at date t + 1 from holding a long position in the inverse
perpetual futures over the period from date t to date t + 1 is(

1
f It+1

− 1
f It

)
− κIt

(
1
f It
− x∗t

)
− ιItx∗t

where f It denotes the inverse perpetual futures price quoted in units of a, x∗t = 1/xt

denotes the price of one unit of a in units of b, and (ιIt, κIt) are contract-specific adapted
funding parameters set by the exchange. Since entering an inverse futures position is
costless, the absence of arbitrage requires that

EQb
t

[(
1

f It+1
− 1

f It

)
− κIt

(
1
f It
− x∗t

)
− ιItx∗t

]
= 0, ∀t ≥ 0,

where Qb is the pricing measure for b−denominated cash flows. Rearranging this
identity we find that

1
f It

=
1

1 + κIt
EQb

t

[
1

f It+1

]
+

(
κIt − ιIt

1 + κIt

)
x∗t

and iterating this relation forward reveals that

1
f It

= EQb
t

[(
T−1

∏
τ=t

1
1 + κIτ

)
1

f IT
+

T−1

∑
σ=t

(
σ

∏
τ=t

1
1 + κIτ

)
(κIσ − ιIσ) x∗σ

]
. (8)

for all t + 1 ≤ T. As in the linear case, we single out a natural solution to this recursive
equation by imposing the transversality condition

lim
T→∞

EQb
t

[(
T−1

∏
τ=t

1
1 + κIτ

)
1

f IT

]
= 0, ∀t ≥ 0. (9)

Arguments similar to those of Section 4 then deliver the following counterparts of
Propositions 1–2 and Corollaries 1–2 for the inverse contract.

Proposition 3. Assume that

EQb

[
∞

∑
σ=0

(
σ

∏
τ=0

1
1 + κIτ

)
|κIσ − ιIσ| x∗σ

]
< ∞. (10)
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Then the process

1
f It

= EQb
t

[
∞

∑
σ=t

(
σ

∏
τ=t

1
1 + κIτ

)
(κIσ − ιIσ) x∗σ

]

is the unique solution to (4) that satisfies condition (4).

Corollary 3. If the interest factor

ιIt =
rbt − rat

1 + rat
< κIt

then the perpetual inverse futures price is equal to the spot price. In this case, the one period
cash flow of a long position can be replicated by borrowing

mItx∗t =
x∗t

1 + rat

units of b at rate rbt and investing mIt units of a at rate rat.

Corollary 4. If ιI < κI and (ra, rb) are constants such that

1
1 + κI

(
1 + rb
1 + ra

)
< 1

then the perpetual inverse futures price

f It =
ra − rb + κI (1 + ra)

(κI − ιI) (1 + ra)
xt

is decreasing in rb as well as increasing in ra and ιI , and converges monotonically to the spot
price as the premium rate κI → ∞.

Proposition 4. Assume that (3) holds and that −1 < ιIt < κIt. Then the perpetual futures
price satisfies

1
f It

= EQb
t

[(
θIt−1

∏
τ=t

1
1 + ιIτ

)
x∗θIt

]

where θIt ≥ t is a random time that is defined on an extension of the probability space and
distributed according to

Qb (θIt = σ|F ) = 1{t≤σ}
κIσ − ιIσ

1 + ιIσ

(
σ

∏
τ=t

1 + ιIτ

1 + κIτ

)
.
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In particular, if the premium rate κI is constant and the interest factor ιI ≡ 0 then the perpetual
inverse futures price is simply given by

f It = EQb
t

[
x∗t+ηI

]−1

where ηI is a geometrically distributed random time with mean 1/κI .

Part II

Continuous-time

5 The model

Time is continuous and indexed by t ≥ 0. Uncertainty is represented by a filtered
probability space (Ω, F , F, P) where the filtration is right continuous and such that
F = ∩t≥0Ft. Unless specified otherwise all processes to appear in what follows are
assumed to be adapted to the filtration F.

As in discrete-time, there are two currencies i ∈ {a, b} and we denote by xt the b/a
exchange rate at date t. Investors can freely exchange currencies at this rate and are
allowed to invest in two locally riskless assets: one denominated in units of a and the
other in units of b. The price of these assets satisfy

dBit = ritBitdt, Bi0 = 1, i ∈ {a, b}

where rit > −1 captures the return on the i−denominated asset over an infinitesimal
time interval starting at date t. To ensure the absence of arbitrages between these
primitive assets we assume that there exists a probability Qa that is equivalent to P
when restricted to Ft for any finite t and such that (2) holds for all real t ≤ s; and we
note that, as in the discrete-time formulation, this assumption implies the existence of
a probability Qb that is equivalent to P when restricted to Ft for any finite t and such
that (2) is satisfied for all real t ≤ s.

6 Linear futures pricing

Let τ ≤ σ be stopping times. In view of the single period cash flow in (3) it is clear that
the cumulative a−discounted cash flows from holding a long position in a perpetual
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futures contract over [[τ, σ]] are given by

∫ σ

τ

dCt

Bat
=
∫ σ

τ

1
Bat

(d ft − (ιtxt + κt ( ft − xt)) dt)

where the premium rate κt > 0 and the interest factor ιt are set by the exchange. Since
a position in the contract can be opened or closed without cost at any point in time,
the absence of arbitrage requires that

EQa
τ

[∫ σ

τ

dCt

Bat

]
= 0, ∀τ ≤ σ ∈ S

where S denotes the set of stopping times of the filtration. Rearranging this equality
shows that the process

Mt :=
∫ t

0

dCs

Bas

is a martingale under Qa. This in turn implies that Ct is a local martingales under Qa

and substituting the definition of the cumulative cash flow process reveals that the
perpetual futures prices evolves according to

d ft = BatdMt + (ιtxt + κt ( ft − xt)) dt.

Finally, discounting at the premium rate κt on both sides and integrating the resulting
expression shows that

e−
∫ t

0 κudu ft +
∫ t

0
e−
∫ s

0 κudu (ιs − κs) xsds ∈Mloc(Qa) (11)

where Mloc(Qa) denotes the set of Qa−local martingales. As in discrete-time, one
can single out a unique process satisfying this restriction by imposing a transversality
condition which here takes the following form:

lim
σ→∞

EQa
t

[
e−
∫ σn

0 κudu fσn

]
= 0, ∀t ≥ 0 and (σn)

∞
n=1 ⊂ S s.t. σn ↑ ∞. (12)

Classical arguments then lead to the following continuous-time versions of the results
of Propositions 1–2 and Corollaries 1–2. While the proofs are slightly more involved
in continuous-time we stress that the results themselves are the exact counterparts of
the discrete-time results.
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Proposition 5. Assume that

EQa

[∫ ∞

0
e−
∫ s

0 κudu |κs − ιs| xsds
]
< ∞. (13)

Then

ft = EQa
t

[∫ ∞

t
e−
∫ s

t κudu (κs − ιs) xsds
]

(14)

is the unique process that satisfies both (6) and (6).

Corollary 5. If ι < κ and (ra, rb) are constants such that κ + rb − ra > 0 then the perpetual
futures price

ft =
(κ − ι)

κ + rb − ra
xt

is increasing in ra as well as decreasing in rb and ι, and converges monotonically to the spot
price as the premium rate κ → ∞.

In a contemporaneous paper ? show that in a continuous-time setting with constant
parameters and rb = ι ≡ 0 the perpetual futures price is given by

(
1 + ra

κ

)
xt which is

clearly different from the prescription of Corollary 5. The reason for this discrepancy
is that the specification considered by ? if different from ours and, in fact, inconsistent
with the assumption that entering a contract is costless unless ra ≡ 0. Specifically, ?,
Definition 1 and Table 1 assume that the discounted payoff generated by holding a
long position in one unit of the contract between two stopping times τ and σ is

e−raσ (Fσ − Fτ)−
∫ σ

τ
e−rasκ (Fs − xs) ds.

If entering the contract is costless then the value of this payoff at date τ should be zero
for all stopping times τ ≤ σ, i.e. we should have

EQa
τ

[
e−raσ (Fσ − Fτ)−

∫ σ

τ
e−rasκ (Fs − xs) ds

]
= 0, τ ≤ σ ∈ S . (15)

But this restriction implies that

Mt(T) = Ft∧T −
∫ t∧T

0
era(T−s)κ (Fs − xs) ds
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is a martingale under Qa for any T < ∞ which is not possible if ra 6= 0. Indeed, if that
property was satisfied then the difference

Mt(T)−Mt(T + h) =
∫ t

0

(
era(T−s) − era(T+h−s)

)
κ (Fs − xs) ds

would be a continuous Qa−martingale of finite variation on [0, T] and thus a constant.
If ra = 0 then this is not a problem. However, if ra 6= 0 then the constancy of the above
difference requires that Ft = xt which is inconsistent with (6) because the exchange
rate cannot be a martingale under Qa when ra 6= 0 = rb. Intuitively, the problem in
the specification of ? is that, instead of being paid continuously over time, the margin
Fσ − Fτ is paid in a lumpsum upon exiting the contract.

Corollary 6. Assume that

ιt ≡ rat − rbt < κt

then the perpetual futures price is equal to the spot price at all times and can be dynamically
replicated by trading in the two riskless assets.

Proposition 6. Assume that condition (5) holds and that ιt < κt. Then the perpetual futures
price can be expressed as

ft = EQa
t

[
e−
∫ θt

t ιuduxθt

]
where θt ≥ t is a random time that is defined on an extension of the probability space and
distributed according to

Qa (θt ∈ ds|F ) = 1{s≥t}e
−
∫ s

t (κu−ιu)du (κs − ιs) ds, s ≥ 0.

In particular, if the premium rate κ is constant and the interest factor ι ≡ 0 then the perpetual
futures price is simply given by

ft = EQa
t

[∫ ∞

t
κe−κ(s−t)xsds

]
= EQa

t [xt+τ]

where τ is an exponentially distributed random time with mean 1/κ.
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7 Inverse and quanto futures pricing

Perpetual inverse futures. Let x∗t := 1/xt denote the price of one unit of a in units of
b and recall that Qb is the pricing measure for b−denominated cash flows. Proceeding
as in the case of the linear contract shows that the arbitrage restriction for the inverse
contract is given by

EQb
τ

[∫ σ

τ

dCit

Bbt

]
= 0, ∀τ ≤ σ ∈ S ,

where the incremental cash flow

dCit = d
(

1
f It

)
− κIt

(
1
f It
− x∗t

)
dt− ιItx∗t dt

is denominated in units of b and the parameters (ιIt, κIt) are set by the exchange subject
to κIt > 0. The same arguments as in the linear case then imply that

e−
∫ t

0 κIudu 1
f It

+
∫ t

0
e−
∫ s

0 κIudu (ιIu − κIu) x∗s ds ∈Mloc(Qb) (16)

and imposing the transversality condition

lim
σ→∞

EQb
t

[
e−
∫ σn

0 κIudu 1
f Iσn

]
= 0, ∀t ≥ 0 and (σn)

∞
n=1 ⊂ S s.t. σn ↑ ∞

allows to uniquely determine the inverse futures price. In particular, we have the
following counterparts to Propositions 5–6 and Corollaries 5–6.

Proposition 7. Assume that

EQb

[∫ ∞

0
e−
∫ s

0 κIudu |κIs − ιIs| x∗s ds
]
< ∞. (17)

Then the process

1
f It

= EQb
t

[∫ ∞

t
e−
∫ s

t κIudu (κIs − ιIs) x∗s ds
]

is the unique solution to (7) that satisfies condition (6).

Corollary 7. If the interest factor

ιIt = rbt − rat < κt
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then the perpetual inverse futures price equals the spot price at all times and can be dynamically
replicated by trading in the two riskless assets.

Corollary 8. If ιI < κI and (ra, rb) are constants such that κI + ra− rb > 0 then the perpetual
inverse futures price

f It =
(κI + ra − rb)

κI − ιI
xt

is decreasing in rb as well as increasing in ra and ι, and converges monotonically to the spot
price as the premium rate κI → ∞.

Proposition 8. Assume that (7) holds and that ιIt < κIt. Then the perpetual futures price can
be expressed as

1
f It

= EQb
t

[
e−
∫ θIt

t ιIudux∗θIt

]
where θIt ≥ t is a random time that is defined on an extension of the probability space and
distributed according to

Qb (θIt ∈ ds|F ) = 1{t≤s}e
−
∫ s

t (κIu−ιIu)du (κIs − ιIs) ds, s ≥ 0.

In particular, if the premium rate κI is constant and the interest factor ιI ≡ 0 then the perpetual
inverse futures price is simply given by

1
f It

= EQb
t

[∫ ∞

t
κIe−κI(s−t)x∗s ds

]
= EQb

t
[
x∗t+τi

]
where τi is an exponentially distributed random time with mean 1/κI .

Perpetual quanto futures. Let now c denote a third currency. Quanto futures are
contracts that give exposure to the c/a exchange rate zt > 0 but are quoted, margined,
and funded using currency b. Specifically, the size of the contract is set to one unit
of c and the periodic cash flows are computed in units of a but paid in units b after
conversion using a constant a/b exchange rate χ∗ specified in the contract.

Accordingly, the instantaneous cash flow in units of b from a long position in the
perpetual quanto futures contract is

dCqt = χ∗d fqt − χ∗
(
ιqtzt + κqt

(
fqt − zt

))
dt
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Electronic copy available at: https://ssrn.com/abstract=4603820



where the funding parameters (ιqt, κqt) are set by the exchange subject to κqt > 0, and
the absence of arbitrage requires that

χ∗EQb
τ

[∫ σ

τ

dCqt

Bbt

]
= 0, ∀τ ≤ σ ∈ S .

Proceeding as in the linear case then shows that

e−
∫ t

0 κqudu fqt +
∫ t

0
e−
∫ s

0 κqudu (ιqu − κqu
)

zsds ∈Mloc(Qb),

and imposing the transversality condition

lim
σ→∞

EQb
t

[
e−
∫ σn

0 κqudu fqσn

]
= 0, ∀t ≥ 0 and (σn)

∞
n=1 ⊂ S s.t. σn ↑ ∞

allows to uniquely determine the quanto futures price.

Proposition 9. Assume that

EQb

[∫ ∞

0
e−
∫ s

0 κqudu ∣∣κqs − ιqs
∣∣ zsds

]
< ∞.

Then the process

fqt = EQb
t

[∫ ∞

t
e−
∫ s

t κqudu (κqs − ιqs
)

zsds
]

is the unique solution to (7) that satisfies condition (6). If, furthermore, κqt − ιqt > 0 then the
perpetual quanto futures price can expressed as

EQb
t

[
e−
∫ θqt

t ιquduzθqt

]
where θqt ≥ t is a random time that is defined on an extension of the probability space and
distributed according to

Qb
(
θqt ∈ ds

∣∣F ) = 1{t≤s}e
−
∫ s

t (κqu−ιqu)du (κqs − ιqs
)

ds, s ≥ 0.

In particular, if the premium rate κq is constant and the interest factor ιq ≡ 0 then the perpetual
quanto futures price is simply given by

fqt = EQb
t

[∫ ∞

t
κqe−κq(s−t)zsds

]
= EQb

t

[
zt+τq

]
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where τq is an exponentially distributed random time with mean 1/κq.

In contrast to the linear and inverse cases it is no longer possible to obtain explicit
expressions for the futures price or the equalizing interest factor without specifying
a model for the exchange rates zt and xt. This difficulty arises from the fact that zt

applies to the currency pair c/a and thus is unrelated to currency b. As a result, its
drift under Qb depends on the covariance between changes in zt and changes in the
b/a exchange rate xt, and this covariance can only be computed once we specify the
sources of risk that affect theses processes.

To illustrate this convexity adjustment assume that ra, rb, rc, ιq, κq are constants and
that the pair (xt, zt) evolves according to

dxt/xt = (ra − rb) dt + σ∗x dZat (18)

dzt/zt = (ra − rc) dt + σ∗z dZat

where rc is the constant interest rate that applies to c−denominated riskfree deposits
and loans, (σx, σz) are constant vectors of dimension n, and Zat is a n−dimensional
Brownian under measure Qa. Since

dQb
dQa

∣∣∣∣
Ft

= e(rb−ra)t xt

x0
= e−

1
2‖σx‖2t+σ∗x Zat

it follows from Girsanov’s theorem that

dzt/zt = (ra − rc + σ∗x σz) dt + σ∗z dZbt

where Zbt is an n−dimensional Brownian under Qb and using this evolution allows to
derive the following result:

Proposition 10. Assume that ιq < κq and κq + rc − ra − σ∗x σz > 0. Then the perpetual
quanto futures price

fqt =

(
κq − ιq

)
zt

κq + rc − ra − σ∗x σz

is decreasing in rc and ιq as well as increasing in ra and σ∗x σz, and converges monotonically to
the spot price as the premium rate κq → ∞.
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8 Everlasting options

Everlasting options work in a similar manner as perpetual futures but track a function
of the spot price instead of the spot price itself. The idea and the name seem to go
back to ? and some specifications, such as quadratic perpetuals, are traded on some
exchanges. See, for example ?. Note however that the name can be misleading: Ever-
lasting options are actually not options but perpetual future contracts. In particular,
an everlasting call or put option is very different from a perpetual American option.

Let ϕ : R+ → R denote a payoff function. The futures price for the corresponding
everlasting option is quoted and margined in units of a. As a result, the cumulative
cash flows from holding a long position evolves according to

dCot = d fot − κot ( fot − ϕ(xt)) dt

where fot denotes the (futures) price of the everlasting option and κot > 0 is a premium
rate set by the exchange. The same arguments as in the linear case then imply that the
absence of arbitrage requires that

e−
∫ t

0 κIudu fot +
∫ t

0
e−
∫ s

0 κIuduκos ϕ (xs) ds ∈Mloc(Qa) (19)

and imposing the transversality condition

lim
σ→∞

EQa
t

[
e−
∫ σn

0 κoudu foσn

]
= 0, ∀t ≥ 0 and (σn)

∞
n=1 ⊂ S s.t. σn ↑ ∞ (20)

allows to uniquely determine the inverse futures price.

Proposition 11. Assume that

EQa

[∫ ∞

0
e−
∫ s

0 κouduκqsxsds
]
< ∞. (21)

Then the process

fot = EQa
t

[∫ ∞

t
e−
∫ s

t κouduκosxsds
]

is the unique solution to (8) that satisfies condition (8). Furthermore, this unique solution can
be expressed as

fot = EQa
t [ϕ (xθot)]
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where θot ≥ t is a random time that is defined an extension of the probability space and dis-
tributed according to

Qa (θot ∈ ds|F ) = 1{t≤s}e
−
∫ s

t κouduκosds, s ≥ 0.

In particular, if κo is constant then

fot = EQa
t

[∫ ∞

t
κoe−κo(s−t)ϕ (xs) ds

]
= EQa

t [ϕ (xt+τo)]

where τo is an exponentially distributed random time with mean 1/κo.

In a recent paper, ? study an inverse problem that is related to Corollary 6. How-
ever, their results are not directly comparable to ours because the contract that they an-
alyze is different. Indeed, they consider an a−denominated perpetual contract which
the long pays some amount Φτ upon entering the contract at date τ as well as funding at
some rate Ftdt and receives the amount Φσ upon exiting the contract at date σ ≥ τ. In
this specification, the cumulative net discounted cash flow to the long over the holding
period is

N :=
Φσ

Baσ
− Φτ

Baτ
−
∫ σ

τ

Fs

Bas
ds =

∫ σ

τ
d
(

Φs

Bas

)
−
∫ σ

τ

Fs

Bas
ds.

By contrast, in our formulation the cumulative discounted cash flows from holding a
long position in the corresponding perpetual futures would be

∫ σ

τ

(
dΦs

Bas
− Fs

Bas
ds
)
= N +

∫ σ

τ
ras

Φs

Bas
ds

because the contract is margined continuously rather than only at the beginning and
end. We believe that our formulation more closely reflects the actual functioning of
markets because in practice contracts do not require an upfront payment.

Within our formulation, the problem analyzed by ? consists in determining the
funding rate Ft in such a way that the associated perpetual futures price Φt = ϕ(xt)

at all times for some given function. If the exchange rate follows an Itô process as in
their paper, then (2) implies that

dxt = (rat − rbt) xtdt + Σ∗xtdZat

for some diffusion coefficient Σxt and some Qa−Brownian motion Zat of the same
dimension. In this case, the problem can be solved by a direct application of Itô’s
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lemma. Indeed, if ϕ ∈ C2 then the funding rate

Ft(ϕ) := ϕ′(xt) (rat − rbt) xt +
1
2

ϕ′′(xt)‖Σxt‖2

has the property that

∫ t

0

1
Bas

(dϕ(xs)− Fs(ϕ)) ds ∈Mloc(Qa).

Under appropriate integrability assumptions on ϕ(xt) this local martingale property
in turn implies that

EQa
τ

[∫ σ

τ

1
Bas

(dϕ(xs)− Fs(ϕ)) ds
]
= 0, ∀τ ≤ σ ∈ S ,

and it follows that ϕ(xt) is the futures price induced by the funding rate Ft(ϕ). In
particular, for the identity function we find that

Ft(ϕ) = (rat − rbt) xt

from which we recover the result of Corollary 6. Note however that the latter corollary
was proved without any assumption on the evolution of the exchange rate other than
the no-arbitrage condition.

To illustrate the pricing of everlasting options, assume the exchange rate evolves
according to (7) and consider the call and put options with premium rate κ > 0. The
associated prices are given by

ct = EQa
t

[∫ ∞

t
κe−κ(s−t) (xs − K)+ ds

]
,

pt = EQa
t

[∫ ∞

t
κe−κ(s−t) (K− xs)

+ ds
]

,

and satisfy the everlasting put-call parity

ct − pt = EQa

[∫ ∞

t
κe−κ(s−t) (xs − K) ds

]
= f (xt)− K

where

f (xt) := EQa
t

[∫ ∞

t
κe−κ(s−t)xsds

]
=

κxt

κ − ra + rb
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denotes the perpetual futures price with premium rate κ and interest factor ι = 0.
Furthermore, a standard calculation based on properties of the geometric Brownian
motion delivers an explicit formula for the everlasting option prices:

Proposition 12. Assume that κ − ra + rb > 0. Then the Black-Scholes-Merton prices of the
everlasting call and put are explicitly given by

pt = ct + K− f (xt),

ct =

xΘ
t K1−Θ

(
Π(ra−rb)−κ

(Π−Θ)(κ−ra+rb)

)
, xt ≤ K

xΠ
t K1−Π

(
Θ(ra−rb)−κ

(Π−Θ)(κ−ra+rb)

)
+ f (xt)− K, xt > K

where Π < 0 and Θ > 1 are the roots of the quadratic equation

κξ +
1
2

ξ (ξ − 1) ‖σx‖2 − κ = 0

associated with the dynamics of the b/a exchange rate under Qa.

Explicit pricing formulas along these lines can be derived in closed form for any
given payoff function ϕ as long as (11) is satisfied.

A Proofs

A.1 Discrete-time results

Since the proofs are similar in the linear and inverse cases we only provide complete
details for the results pertaining to linear contracts.

Proof of Proposition 1. Assume that the process ft is a solution to (3) that satisfies (3).
Passing to the limit in (3) and using (3) shows that

ft = lim
T→∞

EQa
t

[
T−1

∑
σ=t

(
σ

∏
τ=t

1
1 + κτ

)
(κσ − ισ) xσ

]

and the conclusion now follows from (1) by dominated convergence.
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Proof of Corollary 1. Under the stated assumption

∞

∑
σ=0

(
σ

∏
τ=0

1
1 + κ

)
EQa [xσ] =

1
1 + κ

∞

∑
σ=0

[
1

1 + κ

(
1 + ra

1 + rb

)]σ

x0

=
1 + rb

rb − ra + κ(1 + rb)
x0 < ∞

where the second equality follows from the no-arbitrage restriction (2). Therefore,
condition (1) is satisfied and it thus follows from Proposition 1 that

ft =
κ − ι

1 + κ

∞

∑
σ=t

(
1

1 + κ

)σ−t
EQa

t [xσ]

=
κ − ι

1 + κ

∞

∑
σ=t

[
1

1 + κ

(
1 + ra

1 + rb

)]σ−t
xt =

(κ − ι) (1 + rb)

rb − ra + κ(1 + rb)
xt

where the second equality also follows from (2). The comparative statics follow by
differentiating the futures price.

To prove the second part observe that under this specification the cash flow at date
t + 1 from a long position in the perpetual futures

xt+1 − xt +
rat − rbt
1 + rbt

xt = mt (1 + rbt) xt+1 −mtxt (1 + rat)

coincides with the outcome of a cash and carry trade that borrows mtxt units of a at
rate rat to buy mt units of b which are invested at rate rbt until date t + 1 where the
proceeds are converted back to units of a and used to payback the loan.

Proof of Corollary 2. Under the stated assumptions

EQa

[
∞

∑
σ=0

(
σ

∏
τ=0

1
1 + κτ

)
|κσ − ισ| xσ

]

= EQa

[
∞

∑
σ=0

(
σ−1

∏
τ=0

1
1 + κτ

1 + raτ

1 + rbτ

)
rbσ − raσ + κσ (1 + rbσ)

(1 + κσ) (1 + rbσ)

(
Bbσ

Baσ
xσ

)]

= EQb

[
∞

∑
σ=0

(
σ−1

∏
τ=0

1
1 + κτ

1 + raτ

1 + rbτ

)
rbσ − raσ + κσ (1 + rbσ)

(1 + κσ) (1 + rbσ)

]
x0 = x0 < ∞
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where the second equality follows from the fact that absent arbitrage opportunities the
pricing measures are related by

dQa

dQb

∣∣∣∣
Ft

=
Bbt
Bat

xt

x0
, t ≥ 0. (22)

Therefore, condition (1) is satisfied and it thus follows from Proposition 1 that the
perpetual futures price is given by

ft = EQa
t

[
∞

∑
σ=t

(
σ−1

∏
τ=t

1
1 + κτ

1 + raτ

1 + rbτ

)
rbσ − raσ + κσ (1 + rbσ)

(1 + κσ) (1 + rbσ)

(
BbσBat

BaσBbt
xσ

)]

= EQb
t

[
∞

∑
σ=t

(
σ−1

∏
τ=t

1
1 + κτ

1 + raτ

1 + rbτ

)
rbσ − raσ + κσ (1 + rbσ)

(1 + κσ) (1 + rbσ)

]
xt = xt

where the second equality follows from (A.1).

Proof of Proposition 2. Under the stated assumption

EQa
t

[(
θt−1

∏
τ=t

1
1 + ιτ

)
xθt

]
= EQa

t

[
∞

∑
σ=t

(
σ−1

∏
τ=t

1
1 + ιτ

)
xσ Qa (θt = σ|F )

]

= EQa
t

[
∞

∑
σ=t

(
σ−1

∏
τ=t

1
1 + ιτ

)
xσ

κσ − ισ
1 + ισ

(
σ

∏
τ=t

1 + ιτ
1 + κτ

)]

= EQa
t

[
∞

∑
σ=t

(
σ

∏
τ=t

1
1 + κτ

)
(κσ − ισ) xσ

]
= ft

where the last equality follows from Proposition 5. The second part directly follows
from the first when κ is constant and ι ≡ 0.

A.2 Continuous-time results

Since the proofs are similar in the linear, inverse, and quanto cases we only provide
complete details for the results pertaining to linear contracts.

Proof of Proposition 5. Assume that the process ft satisfies both (6) and (6). Due to (6)
we have that

e−
∫ t

0 κudu ft +
∫ t

0
e−
∫ s

0 κudu (ιs − κs) xsds ∈Mloc(Qa).
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Therefore, it follows that for any given date t ≥ 0 there exists a sequence of stopping
times (σn)∞

n=1 such that t ≤ σn ↑ ∞ and

ft = EQa
t

[
e−
∫ σn

t κudu fσn +
∫ σn

t
e−
∫ s

t κudu (κs − ιs) xsds
]

, n ≥ 1.

Letting n→ ∞ on both sides of this equality and using the transversality condition (6)
then shows that we have

ft = lim
n→∞

EQa
t

[∫ σn

t
e−
∫ s

t κudu (κs − ιs) xsds
]

and the required conclusion now follows from (5) by dominated convergence. Note
that if κt − ιt ≥ 0 then (5) becomes superfluous since the result can then be obtained
by monotone convergence. However, nothing guarantees that the perpetual futures
price process in (5) is well defined under this weaker assumption.

Proof of Corollary 5. Under the stated assumption

EQa

[∫ ∞

0
e−κs |κ − ι| xsds

]
= EQa

[∫ ∞

0
e−(κu−ra+rb)s (κ − ι)

(
Bbs
Bas

xs

)
ds
]

= EQb

[∫ ∞

0
e−(κu−ra+rb)s (κ − ι) x0ds

]
=

(κ − ι) x0

κ − ra + rb
< ∞

where the third equality follows κ− ra + rb > 0 and the fact that pricing measures are
related by (A.2). This shows that condition (5) is satisfied. Therefore, Proposition 5
and the same change of probability now imply that

ft = EQa
t

[∫ ∞

t
e−κ(s−t) (κ − ι) xsds

]
= EQa

t

[∫ ∞

t
e−(κ−ra+rb)(s−t) (κ − ι)

(
BbsBat

BasBbt
xs

)
ds
]

= EQb
t

[∫ ∞

t
e−(κ−ra+rb)(s−t) (κ − ι) xtds

]
=

(κ − ι) xt

κ − ra + rb
.

This establishes the required pricing formula and the comparative statics now follow
by differentiating the result.
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Proof of Corollary 6. Under the stated assumption

EQa

[∫ ∞

0
e−
∫ s

0 κudu |κs − ιs| xsds
]

= −EQa

[∫ ∞

0

(
Bbs
Bas

xs

)
d
(

e−
∫ s

0 (κu−rau+rbu)du
)]

= −EQb

[∫ ∞

0
x0d

(
e−
∫ s

0 (κu−rau+rbu)du
)

ds
]
= x0 < ∞

where the third equality follows from κt − rat + rbt > 0 and the second from the fact
that the pricing measures are related by

dQb
dQa

∣∣∣∣
Fs

=
Bbs
Bas

xs

x0
, 0 ≤ s < ∞. (23)

This shows that condition (5) is satisfied. Therefore, Proposition 5 and the same change
of probability now imply that

ft = EQa
t

[∫ ∞

t
e−
∫ s

t κudu (κs − ιs) xsds
]

= −EQa
t

[∫ ∞

t

(
BbsBat

BasBbt
xs

)
d
(

e−
∫ s

t (κu−rau+rbu)du
)]

= −EQb
t

[
xt

∫ ∞

t
d
(

e−
∫ s

t (κu−rau+rbu)du
)]

= xt.

To establish the second part consider the self-financing strategy that starts from zero at
some stopping time τ, is long one unit of the contract, short nt = −1/Bbt units of the
b−riskfree asset, and invests the remainder in the a−riskfree asset. Under the given
specification the value of this strategy evolves according to

dvt = rat (vt − ntBbtxt) dt + ntd (Bbtxt) + dxt − (rat − rbt) xtdt

= rat (vt + xt) dt− (dxt + rbtxtdt) + dxt − (rat − rbt) xtdt = ratvtdt

subject to the initial condition vτ = 0. This readily implies that vt = 0 for all t ≥ τ and
completes the proof.

Proof of Proposition 6. Under the stated assumption

EQa
t

[
e−
∫ θt

t ιuduxθt

]
= EQa

t

[∫ ∞

t
e−
∫ s

t ιuduxsQa (θt ∈ ds|F )

]
= EQa

t

[∫ ∞

t
e−
∫ s

t κudu (κs − ιs) xsds
]
= ft
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where the last equality follows from Proposition 5. The second part directly follows
from the first when κ is constant and ι ≡ 0.

Proof. By Lemma 1 in Appendix B we have that ct = c(xt) where c : R+ → R is the
unique solution to

κc′(x) = (ra − rb)xc′(x) +
1
2

x2‖σx‖2c′′(x) + κ(x− K)+

in the space of linear growing C1 and piecewise C2 functions on R+. Standard results
show that the general solution to this equation is

c(x) =

xΘ A0 + xΠ A1, x ≤ K,

xΘ A2 + xΠ A3 + f (x)− K, x > K,

for some constants (Ai)
3
i=0 where the exponents are defined as in the statement. Since

the solution we seek grows at most linearly we must have that A1 = A2 = 0. On the
other hand, requiring that the solution is C1 at the strike gives a two linear equations
for (A0, A4) and solving this system gives the result in the statement.

B A technical lemma

Denote by

L =

{
` : R+ → R : sup

x≥0

|`(x)|
1 + x

< ∞

}
.

the set of functions that satisfy a linear growth condition and set

v(xt) := Et

[∫ ∞

t
e−ρ(s−t)` (xs) ds

]
where xt is a geometric Brownian motion with parameters (µ, σ) such that ρ− µ > 0
and the reward function ` ∈ L

Lemma 1. The differential equation

ρw(x) = µxw′(x) +
1
2

σ2x2w′′(x) + `(x) (24)

admits a unique C1 and piecewise C2 solution in L and this solution is v.
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Proof. The existence of a solution with the required properties follows from standard
results on second order differential equations. To prove the second let w denote any
such a solution. Since w solves (1) it follows from Itô’s lemma that

e−ρtw (xt) +
∫ t

0
e−ρs` (xs) ds

is a local martingale. Therefore, for any given date t ≥ 0 there exist an increasing
sequence of stopping times (τn)∞

n=1 such that t ≤ τn → ∞ and

w (xt) = Et

[∫ τn

t
e−ρs` (xs) ds + e−ρτn w (xτn)

]
.

Since ρ > µ and w ∈ L we have that

e−ρτn |w (xτn)| ≤ e−ρτn α (1 + xτn) ≡ yτn

for some α > 0 where the process yt = e−ρtxt is supermartingale of class D that
converges to zero, and it follows that

lim
n→∞

∣∣Et
[
e−ρτn w (xτn)

]∣∣ ≤ lim
n→∞

Et [yτn ] = Et

[
lim

n→∞
yτn

]
= 0. (25)

On other hand, because ` ∈ L we have that

Et

[∫ ∞

t
e−ρs |` (xs)| ds

]
≤ αEt

[∫ ∞

t
e−ρs (1 + xs) ds

]
=

αxt

ρ− µ
+

α

ρ

and, therefore,

lim
n→∞

Et

[∫ τn

t
e−ρs` (xs) ds

]
= Et

[∫ ∞

t
e−ρs` (xs) ds

]
by the dominated convergence theorem. Combining this identity with (B) then shows
that w = v and thus also establishes the uniqueness claim.
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